Bài 6 trang 79 SGK Đại số 10

Bình chọn:
3.3 trên 19 phiếu

Giải bài 6 trang 79 SGK Đại số 10. Trong mặt phẳng tọa độ Oxy, trên các tia Ox, Oy...

Đề bài

Trong mặt phẳng tọa độ \(Oxy\), trên các tia \(Ox, Oy\) lần lượt lấy các điểm \(A\) và \(B\) thay đổi sao cho đường thẳng \(AB\) luôn tiếp xúc với đường tròn tâm \(O\) bán kính \(1\). Xác định tọa độ của \(A\) và \(B\) để đoạn \(AB\) có độ dài nhỏ nhất.

Phương pháp giải - Xem chi tiết

Sử dụng hệ quả: Hai số dương bất kì có tích không đổi thì tổng đạt giá trị nhỏ nhất khi hai số bằng nhau.

Lời giải chi tiết

Ta có: \(2S_{OAB} = AB.OH = AB\) (vì \(OH = 1\)).

Vậy diện tích \(∆OAB\) nhỏ nhất khi \(AB\) có độ dài ngắn nhất.

Vì \(AB = AH + HB\) mà \(AH.HB = OH^2= 1\) nên \(AB\) có giá trị nhỏ nhất khi \(AH = HB\) tức \(∆OAB\) vuông cân: \(OA = OB\) và \(AB = 2AH = 2OH = 2\).

\(AB^2= 4 = 2OA^2\) suy ra \(OA= OB = \sqrt2\).

Khi đó tọa độ của \(A, B\) là \(A(\sqrt 2; 0)\) và \(B(0; \sqrt2)\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - Bài 1. Bất đẳng thức

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu