Bài 3 trang 79 SGK Đại số 10


Giải bài 3 trang 79 SGK Đại số 10. Cho a, b, c là độ dài ba cạnh của một tam giác.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(a, b, c\) là độ dài ba cạnh của một tam giác.

a) Chứng minh \((b-c)^2< a^2\);

b) Từ đó suy ra \(a^2+ b^2+ c^2< 2(ab + bc +ca)\).

LG a

Chứng minh \((b-c)^2< a^2\);

Phương pháp giải:

Ta biết trong một tam giác thì một cạnh luôn nhỏ hơn tổng hai cạnh kia: \(a + b > c\)

Lời giải chi tiết:

Ta có: \({\left( {b - c} \right)^2} - {a^2} = \left( {b - c - a} \right)\left( {b - c + a} \right)\)

Do \(b < a + c \Rightarrow b - a - c < 0\) và \(b + a > c \Rightarrow b + a - c > 0\)

Suy ra \(\left( {b - c - a} \right)\left( {b + a - c} \right) < 0\) hay \({\left( {b - c} \right)^2} - {a^2} < 0 \Leftrightarrow {\left( {b - c} \right)^2} < {a^2}\) (điều phải chứng minh).

LG b

Từ đó suy ra \(a^2+ b^2+ c^2< 2(ab + bc +ca)\).

Lời giải chi tiết:

Từ kết quả câu a), ta có:

\(\begin{array}{l}
{a^2} > {\left( {b - c} \right)^2}\\
{b^2} > {\left( {a - c} \right)^2}\\
{c^2} > {\left( {a - b} \right)^2}
\end{array}\)

\({a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2} > {\rm{ }}{\left( {b - c} \right)^2} + {\rm{ }}{\left( {a{\rm{ }}-{\rm{ }}c} \right)^2} \)\(+ {\rm{ }}{\left( {a{\rm{ }} - {\rm{ }}b} \right)^2}\)

\( \Leftrightarrow {a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2} > {\rm{ }}{b^2} + {\rm{ }}{c^2}-{\rm{ }}2bc{\rm{ }} + {\rm{ }}{a^2} \)\(+ {\rm{ }}{c^2}-{\rm{ }}2ac{\rm{ }} + {\rm{ }}{a^2} + {\rm{ }}{b^2}-{\rm{ }}2ab\)

\( \Leftrightarrow 2ab + 2bc + 2ca > {a^2} + {b^2} + {c^2}\)

 \( \Leftrightarrow 2\left( {ab{\rm{ }} + {\rm{ }}bc{\rm{ }} + {\rm{ }}ac} \right){\rm{ }} > {a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2}\)

hay: \(a^2+ b^2+ c^2< 2(ab + bc +ca)\) (điều phải chứng minh).

Loigiaihay.com


Bình chọn:
4.4 trên 54 phiếu

Các bài liên quan: - Bài 1. Bất đẳng thức

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài