Bài 3 trang 79 SGK Đại số 10


Cho a, b, c là độ dài ba cạnh của một tam giác.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(a, b, c\) là độ dài ba cạnh của một tam giác.

a) Chứng minh \((b-c)^2< a^2\);

b) Từ đó suy ra \(a^2+ b^2+ c^2< 2(ab + bc +ca)\).

LG a

Chứng minh \((b-c)^2< a^2\);

Phương pháp giải:

Ta biết trong một tam giác thì một cạnh luôn nhỏ hơn tổng hai cạnh kia: \(a + b > c\)

Lời giải chi tiết:

Ta có: \({\left( {b - c} \right)^2} - {a^2} = \left( {b - c - a} \right)\left( {b - c + a} \right)\)

Do \(b < a + c \Rightarrow b - a - c < 0\) và \(b + a > c \Rightarrow b + a - c > 0\)

Suy ra \(\left( {b - c - a} \right)\left( {b + a - c} \right) < 0\) hay \({\left( {b - c} \right)^2} - {a^2} < 0 \Leftrightarrow {\left( {b - c} \right)^2} < {a^2}\) (điều phải chứng minh).

LG b

Từ đó suy ra \(a^2+ b^2+ c^2< 2(ab + bc +ca)\).

Lời giải chi tiết:

Từ kết quả câu a), ta có:

\(\begin{array}{l}
{a^2} > {\left( {b - c} \right)^2}\\
{b^2} > {\left( {a - c} \right)^2}\\
{c^2} > {\left( {a - b} \right)^2}
\end{array}\)

\({a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2} > {\rm{ }}{\left( {b - c} \right)^2} + {\rm{ }}{\left( {a{\rm{ }}-{\rm{ }}c} \right)^2} \)\(+ {\rm{ }}{\left( {a{\rm{ }} - {\rm{ }}b} \right)^2}\)

\( \Leftrightarrow {a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2} > {\rm{ }}{b^2} + {\rm{ }}{c^2}-{\rm{ }}2bc{\rm{ }} + {\rm{ }}{a^2} \)\(+ {\rm{ }}{c^2}-{\rm{ }}2ac{\rm{ }} + {\rm{ }}{a^2} + {\rm{ }}{b^2}-{\rm{ }}2ab\)

\( \Leftrightarrow 2ab + 2bc + 2ca > {a^2} + {b^2} + {c^2}\)

 \( \Leftrightarrow 2\left( {ab{\rm{ }} + {\rm{ }}bc{\rm{ }} + {\rm{ }}ac} \right){\rm{ }} > {a^2} + {\rm{ }}{b^2} + {\rm{ }}{c^2}\)

hay: \(a^2+ b^2+ c^2< 2(ab + bc +ca)\) (điều phải chứng minh).

Loigiaihay.com


Bình chọn:
4.4 trên 62 phiếu

Các bài liên quan: - Bài 1. Bất đẳng thức

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.