Cho hàm số f(x) liên tục trên đoạn [a;b]. Nếu F(x) là một nguyên hàm của f(x) trên đoạn [a;b] thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x).
\(\int\limits_a^b {f(x)dx} = F(x)\left| {\begin{array}{*{20}{c}}{^b}\\{_a}\end{array}} \right. = F(b) - F(a)\).
Trong đó:
+ \(\int\limits_a^b {} \) là dấu tích phân.
+ a và b là cận tích phân (a là cận dưới, b là cận trên).
+ f(x)dx là biểu thức dưới dấu tích phân.
+ f(x) là hàm số dưới dấu tích phân.
Lưu ý:
+ \(\int\limits_a^a {f(x)dx} = 0\);
+ \(\int\limits_a^b {f(x)dx} = - \int\limits_b^a {f(x)dx} \);
Cho các hàm số y = f(x), y = g(x) liên tục trên đoạn [a;b], \(c \in (a;b)\), k là số thực. Khi đó:
+ \(\int\limits_a^b {kf(x)dx} = k\int\limits_a^b {f(x)dx} \);
+ \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]dx} = \int\limits_a^b {f(x)dx} + \int\limits_a^b {g(x)dx} \);
+ \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx} = \int\limits_a^b {f(x)dx} - \int\limits_a^b {g(x)dx} \);
+ \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} = \int\limits_a^b {f(x)dx} \).
Áp dụng định nghĩa tích phân cùng với các công thức nguyên hàm.
1) Tính các tích phân sau:
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} \);
b) \(\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} \);
c) \(\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} \).
Giải:
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} = \int\limits_1^2 {\left( {{x^{ - 2}} - 2.\frac{1}{x}} \right)dx} = \left. {\left( { - \frac{1}{x} - 2\ln \left| x \right|} \right)} \right|_1^2\)
\( = \left( { - \frac{1}{2} - 2\ln 2} \right) - \left( { - \frac{1}{1} - 2\ln 1} \right) = \frac{1}{2} - 2\ln 2\).
b)
\(\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} = \int\limits_1^2 {\left( {x + 2 + \frac{1}{x}} \right)dx} = \left. {\left( {\frac{{{x^2}}}{2} + 2x + \ln \left| x \right|} \right)} \right|_1^2\)
\( = \left( {\frac{{{2^2}}}{2} + 2.2 + \ln 2} \right) - \left( {\frac{{{1^2}}}{2} + 2.1 + \ln 1} \right) = \frac{7}{2} + \ln 2\).
c) \(\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\left( {\sqrt x - 2} \right)dx} = \int\limits_1^4 {\left( {{x^{\frac{1}{2}}} - 2} \right)dx} \)\( = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - 2x} \right)} \right|_1^4 = \left( {\frac{2}{3}{{.4}^{\frac{3}{2}}} - 2.4} \right) - \left( {\frac{2}{3}{{.1}^{\frac{3}{2}}} - 2.1} \right) = - \frac{4}{3}\).
2) Tính các tích phân sau:
a) \(\int\limits_1^3 {{e^{x - 2}}dx} \);
b) \(\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} \);
c) \(\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} \).
Giải:
a) \(\int\limits_1^3 {{e^{x - 2}}dx} = \int\limits_1^3 {\frac{{{e^x}}}{{{e^2}}}dx} = \left. {\frac{{{e^x}}}{{{e^2}}}} \right|_1^3 = \frac{{{e^3}}}{{{e^2}}} - \frac{{{e^1}}}{{{e^2}}} = e - \frac{1}{e}\).
b)
\(\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} = \int\limits_0^1 {\left( {{2^{2x}} - {{2.2}^x} + 1} \right)dx} = \int\limits_0^1 {\left( {{4^x} - {{2.2}^x} + 1} \right)dx} = \left. {\left( {\frac{{{4^x}}}{{\ln 4}} - 2.\frac{{{2^x}}}{{\ln 2}} + x} \right)} \right|_0^1\)
\( = \left( {\frac{{{4^1}}}{{\ln 4}} - 2.\frac{{{2^1}}}{{\ln 2}} + 1} \right) - \left( {\frac{{{4^0}}}{{\ln 4}} - 2.\frac{{{2^0}}}{{\ln 2}} + 1} \right) = 1 - \frac{1}{{2\ln 2}}\).
c) \(\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} = \int\limits_0^1 {\frac{{\left( {{e^x} - 1} \right)\left( {{e^x} + 1} \right)}}{{{e^x} + 1}}dx} = \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} = \left. {\left( {{e^x} - x} \right)} \right|_0^1\)
\( = \left( {{e^1} - 1} \right) - \left( {{e^0} - 0} \right) = e - 2\).
3) Tính các tích phân sau:
a) \(\int\limits_0^\pi \left( {2\cos x + 1} \right)dx\);
b) \(\int\limits_0^\pi \left( {1 + \cot x} \right)\sin xdx\);
c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \).
Giải:
a) \(\int\limits_0^\pi \left( {2\cos x + 1} \right)dx= \left. {\left( {2\sin x + x} \right)} \right|_0^\pi {\rm{ \;}} = \left( {2\sin \pi + \pi } \right) - \left( {2\sin 0 + 0} \right) = \pi \).
b) \(\int\limits_0^\pi {\left( {1 + \cot x} \right)\sin xdx{\rm{\;}}} = \int\limits_0^\pi \left( {\sin x + \cos x} \right)dx= \left. {\left( { - \cos x + \sin x} \right)} \right|_0^\pi \)
\( = \left( { - \cos \pi + \sin \pi } \right) - \left( { - \cos 0 + \sin 0} \right) = 2\).
c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \left. {\left( {\tan x - x} \right)} \right|_0^{\frac{\pi }{4}} = \left( {\tan \frac{\pi }{4} - \frac{\pi }{4}} \right) - \left( {\tan 0 - 0} \right) = 1 - \frac{\pi }{4}\).