1. Khái niệm tích phân
Cho hàm số f(x) liên tục trên đoạn [a;b]. Nếu F(x) là một nguyên hàm của f(x) trên đoạn [a;b] thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x).
\(\int\limits_a^b {f(x)dx} = F(x)\left| {\begin{array}{*{20}{c}}{^b}\\{_a}\end{array}} \right. = F(b) - F(a)\).
Trong đó:
+ \(\int\limits_a^b {} \) là dấu tích phân.
+ a và b là cận tích phân (a là cận dưới, b là cận trên).
+ f(x)dx là biểu thức dưới dấu tích phân.
+ f(x) là hàm số dưới dấu tích phân.
Lưu ý:
+ \(\int\limits_a^a {f(x)dx} = 0\);
+ \(\int\limits_a^b {f(x)dx} = - \int\limits_b^a {f(x)dx} \);
2. Tính chất của tích phân
Cho các hàm số y = f(x), y = g(x) liên tục trên đoạn [a;b], \(c \in (a;b)\), k là số thực. Khi đó:
+ \(\int\limits_a^b {kf(x)dx} = k\int\limits_a^b {f(x)dx} \);
+ \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]dx} = \int\limits_a^b {f(x)dx} + \int\limits_a^b {g(x)dx} \);
+ \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx} = \int\limits_a^b {f(x)dx} - \int\limits_a^b {g(x)dx} \);
+ \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} = \int\limits_a^b {f(x)dx} \).
3. Cách tính tích phân
Áp dụng định nghĩa tích phân cùng với các công thức nguyên hàm.

4. Ví dụ minh hoạ về cách tính tích phân
1) Tính các tích phân sau:
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} \);
b) \(\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} \);
c) \(\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} \).
Giải:
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} = \int\limits_1^2 {\left( {{x^{ - 2}} - 2.\frac{1}{x}} \right)dx} = \left. {\left( { - \frac{1}{x} - 2\ln \left| x \right|} \right)} \right|_1^2\)
\( = \left( { - \frac{1}{2} - 2\ln 2} \right) - \left( { - \frac{1}{1} - 2\ln 1} \right) = \frac{1}{2} - 2\ln 2\).
b)
\(\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} = \int\limits_1^2 {\left( {x + 2 + \frac{1}{x}} \right)dx} = \left. {\left( {\frac{{{x^2}}}{2} + 2x + \ln \left| x \right|} \right)} \right|_1^2\)
\( = \left( {\frac{{{2^2}}}{2} + 2.2 + \ln 2} \right) - \left( {\frac{{{1^2}}}{2} + 2.1 + \ln 1} \right) = \frac{7}{2} + \ln 2\).
c) \(\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\left( {\sqrt x - 2} \right)dx} = \int\limits_1^4 {\left( {{x^{\frac{1}{2}}} - 2} \right)dx} \)\( = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - 2x} \right)} \right|_1^4 = \left( {\frac{2}{3}{{.4}^{\frac{3}{2}}} - 2.4} \right) - \left( {\frac{2}{3}{{.1}^{\frac{3}{2}}} - 2.1} \right) = - \frac{4}{3}\).
2) Tính các tích phân sau:
a) \(\int\limits_1^3 {{e^{x - 2}}dx} \);
b) \(\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} \);
c) \(\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} \).
Giải:
a) \(\int\limits_1^3 {{e^{x - 2}}dx} = \int\limits_1^3 {\frac{{{e^x}}}{{{e^2}}}dx} = \left. {\frac{{{e^x}}}{{{e^2}}}} \right|_1^3 = \frac{{{e^3}}}{{{e^2}}} - \frac{{{e^1}}}{{{e^2}}} = e - \frac{1}{e}\).
b)
\(\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} = \int\limits_0^1 {\left( {{2^{2x}} - {{2.2}^x} + 1} \right)dx} = \int\limits_0^1 {\left( {{4^x} - {{2.2}^x} + 1} \right)dx} = \left. {\left( {\frac{{{4^x}}}{{\ln 4}} - 2.\frac{{{2^x}}}{{\ln 2}} + x} \right)} \right|_0^1\)
\( = \left( {\frac{{{4^1}}}{{\ln 4}} - 2.\frac{{{2^1}}}{{\ln 2}} + 1} \right) - \left( {\frac{{{4^0}}}{{\ln 4}} - 2.\frac{{{2^0}}}{{\ln 2}} + 1} \right) = 1 - \frac{1}{{2\ln 2}}\).
c) \(\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} = \int\limits_0^1 {\frac{{\left( {{e^x} - 1} \right)\left( {{e^x} + 1} \right)}}{{{e^x} + 1}}dx} = \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} = \left. {\left( {{e^x} - x} \right)} \right|_0^1\)
\( = \left( {{e^1} - 1} \right) - \left( {{e^0} - 0} \right) = e - 2\).
3) Tính các tích phân sau:
a) \(\int\limits_0^\pi \left( {2\cos x + 1} \right)dx\);
b) \(\int\limits_0^\pi \left( {1 + \cot x} \right)\sin xdx\);
c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \).
Giải:
a) \(\int\limits_0^\pi \left( {2\cos x + 1} \right)dx= \left. {\left( {2\sin x + x} \right)} \right|_0^\pi {\rm{ \;}} = \left( {2\sin \pi + \pi } \right) - \left( {2\sin 0 + 0} \right) = \pi \).
b) \(\int\limits_0^\pi {\left( {1 + \cot x} \right)\sin xdx{\rm{\;}}} = \int\limits_0^\pi \left( {\sin x + \cos x} \right)dx= \left. {\left( { - \cos x + \sin x} \right)} \right|_0^\pi \)
\( = \left( { - \cos \pi + \sin \pi } \right) - \left( { - \cos 0 + \sin 0} \right) = 2\).
c) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \left. {\left( {\tan x - x} \right)} \right|_0^{\frac{\pi }{4}} = \left( {\tan \frac{\pi }{4} - \frac{\pi }{4}} \right) - \left( {\tan 0 - 0} \right) = 1 - \frac{\pi }{4}\).
Tích phân - Từ điển Toán 12 


