Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá>
1. Hệ trục tọa độ trong không gian
1. Hệ trục tọa độ trong không gian
Trong không gian, hệ ba trục Ox, Oy, Oz đôi một vuông góc được gọi là hệ trục tọa độ vuông góc Oxyz, hay đơn giản gọi là hệ tọa độ Oxyz. |
Lưu ý:
- Điểm O được gọi là gốc tọa độ
- Ba trục Ox, Oy, Oz lần lượt được gọi là trục hoành, trục tung, trục cao
- Ba mặt phẳng (Oxy), (Oxz), (Oyz) đôi một vuông góc với nhau, được gọi là các mặt phẳng tọa độ. Không gian gắn với hệ tọa độ Oxyz được gọi là không gian Oxyz
- Ta quy ước gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) tương ứng là ba vecto đơn vị trên ba trục Ox, Oy, Oz. Từ nay trở đi, nếu không nói gì thêm thì ta hiểu Không gian Oxyz đã có bộ ba vecto đơn vị trên các trục là \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \). Vì các vecto \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) có độ dài bằng 1 và đôi một vuông góc với nhau nên:
\({\overrightarrow i ^2} = {\overrightarrow j ^2} = {\overrightarrow k ^2} = 1\)
\(\overrightarrow i .\overrightarrow j = \overrightarrow j .\overrightarrow k = \overrightarrow k .\overrightarrow i = 0\)
2. Tọa độ của một điểm
Trong không gian Oxyz, cho điểm M. Nếu \[\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \] thì ta gọi bộ ba số (x;y;z) là tọa độ điểm M đối với hệ trục tọa độ Oxyz và viết M = (x;y;z) hoặc M (x;y;z); x là hoành độ, y là tung độ, z là cao độ của điểm M. |
3. Tọa độ của vecto
Trong không gian Oxyz, cho \(\overrightarrow a \). Nếu \[\overrightarrow a = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \] thì ta gọi bộ ba số \(\left( {{a_1};{a_2};{a_3}} \right)\) là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz và viết \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) hoặc \(\overrightarrow a \left( {{a_1};{a_2};{a_3}} \right)\) Trong không gian Oxyz, nếu \(M({x_M};{y_M};{z_M})\) và \(N({x_N};{y_N};{z_N})\) thì: \(\overrightarrow {MN} = ({x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M})\) |
Ví dụ: Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A’B’C có A(1;0;2), B(3;2;5), C(7;-3;9).
Tìm tọa độ của \(\overrightarrow {AA'} \).
Tìm tọa độ của các điểm B’, C’.
Lời giải
Ta có: \(\overrightarrow {AA'} = ({x_{A'}} - {x_A};{y_{A'}} - {y_A};{z_{A'}} - {z_A}) = (4;0; - 1)\).
Gọi tọa độ của điểm B’ là (x,y,z) thì \(\overrightarrow {BB'} \) = (x-3;y-2;z-5). Vì ABC.A’B’C’ là hình lăng trụ nên ABB’A’ là hình bình hành, suy ra \(\overrightarrow {AA'} \) = \(\overrightarrow {BB'} \).
Do đó \(\left\{ \begin{array}{l}x - 3 = 4\\y - 2 = 0\\z - 5 = - 1\end{array} \right.\) hay x = 7, y = 2, z = 4. Vậy B’(7;2;4).
Lập luận tương tự suy ra C’(11;-3;8).
- Giải mục 1 trang 66, 67, 68 SGK Toán 12 tập 1 - Cùng khám phá
- Giải mục 2 trang 68, 69, 70 SGK Toán 12 tập 1 - Cùng khám phá
- Giải mục 3 trang 70, 71, 72 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.13 trang 73 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.14 trang 73 SGK Toán 12 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục