Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Kết nối tri thức>
1. Đường tiệm cận ngang
1. Đường tiệm cận ngang
Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f(x) = {y_0}\) |
Ví dụ: Tìm TCN của đồ thị hàm số \(y = f(x) = \frac{{3x - 2}}{{x + 1}}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{x + 1}} = 3\)
Vậy đồ thị hàm số f(x) có TCN là y = 3.
2. Đường tiệm cận đứng
Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \); |
Ví dụ: Tìm TCĐ của đồ thị hàm số \(y = f(x) = \frac{{3 - x}}{{x + 2}}\)
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ + }} \frac{{3 - x}}{{x + 2}} = + \infty \)
Vậy đồ thị hàm số có TCĐ là x = -2
3.Đường tiệm cận xiên
Đường thẳng \(y = ax + b(a \ne 0)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\) |
Ví dụ: Tìm TCX của đồ thị hàm số \(y = f(x) = x + \frac{1}{{x + 2}}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 2}} = 0\)
Vậy đồ thị hàm số có TCX là y = x
- Giải mục 1 trang 20, 21 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải mục 3 trang 23, 24 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.16 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức