Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
\(\widehat A = 46^\circ \)
\(\widehat B = 46^\circ \)
\(\widehat F = 46^\circ \)
\(\widehat C = 46^\circ \)
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
MP = 8 cm
BC = 8 cm
MN = 8 cm
AB = 8 cm
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
50\(^\circ \)
40\(^\circ \)
70\(^\circ \)
80\(^\circ \)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
\({40^0}\)
\({25^0}\)
\({80^0}\)
\({90^0}\)