Giải mục 4 trang 32 SGK Toán 8 tập 1 - Kết nối tri thức >
Với hai số a, b bất kì, viết (a - b = a + left( { - b} right)) và áp dụng hằng đẳng thức bình phương của một tổng để tính ({left( {a - b} right)^2}).
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
HĐ4
Video hướng dẫn giải
Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết:
\({\left( {a - b} \right)^2} = {\left[ {a + \left( { - b} \right)} \right]^2} = {a^2} + 2.a.\left( { - b} \right) + {\left( { - b} \right)^2} = {a^2} - 2.ab + {b^2}\)
Luyện tập 4
Video hướng dẫn giải
Khai triển \({\left( {3x - 2y} \right)^2}\)
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết:
\({\left( {3x - 2y} \right)^2} = {\left( {3x} \right)^2} - 2.3x.2y + {\left( {2y} \right)^2} = 9{x^2} - 12xy + 4{y^2}\)
Vận dụng
Video hướng dẫn giải
Trong trò chơi “Ai thông minh hơn học sinh lớp 8”, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả của phép tính \({1002^2}\). Chỉ vài giây sau, Nam đã tính ra kết quả chính xác và giành được điểm. Em hãy giải thích xem Nam đã tính nhanh như thế nào.
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết:
\({1002^2} = {\left( {1000 + 2} \right)^2} = {1000^2} + 2.1000.2 + {2^2} = 1000000 + 4000 + 4 = 1004004\).
- Giải Bài 2.1 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải Bài 2.2 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải Bài 2.3 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.4 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.5 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức