Giải mục 3 trang 31, 32 SGK Toán 8 tập 1 - Kết nối tri thức


Với hai số a,b bất kì, thực hiện phép tính

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Video hướng dẫn giải

Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).

Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)

Phương pháp giải:

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {a + b} \right).\left( {a + b} \right) = a.a + a.b + b.a + b.b = {a^2} + \left( {ab + ab} \right) + {b^2} = {a^2} + 2ab + {b^2}\)

Từ đó ta được \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Luyện tập 3

Video hướng dẫn giải

  1. Khai triển \({\left( {2b + 1} \right)^2}\)
  2. Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết:

1. \({\left( {2b + 1} \right)^2} = {\left( {2b} \right)^2} + 2.2b.1 + {1^2} = 4{b^2} + 4b + 1\)

2. \(9{y^2} + 6yx + {x^2} = {\left( {3y} \right)^2} + 2.3y.x + {x^2} = {\left( {3y + x} \right)^2}\)


Bình chọn:
4.1 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí