Giải mục 2 trang 75,76,77 SGK Toán 12 tập 2 - Kết nối tri thức>
CÔNG THỨC BAYES
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 75 SGK Toán 12 Kết nối tri thức
Trong tình huống mở đầu Mục 2, gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.
a) Nêu các nội dung còn thiếu tương ứng với “(?)” để hoàn thành các câu sau đây:
- \(P\left( {A|B} \right)\) là xác suất để (?) với điều kiện (?);
- \(P\left( {B|A} \right)\) là xác suất để (?) với điều kiện (?).
b) 0,95 là \(P\left( {A|B} \right)\) hay \(P\left( {B|A} \right)\)? Có phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X không?
Phương pháp giải:
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để hoàn thành câu: Cho hai biến cố A và B. Xác suất của biến cố A, tính trong điều kiện biết rằng nếu biến cố B đã xảy ra, được gọi là xác suất của A với điều kiện B và kí hiệu là \(P\left( {A|B} \right)\)
Lời giải chi tiết:
a) \(P\left( {A|B} \right)\) là xác suất để ông M mắc bệnh hiểm nghèo X với điều kiện xét nghiệm kết quả cho dương tính.
\(P\left( {B|A} \right)\) là xác suất để xét nghiệm kết quả cho dương tính với điều kiện ông M mắc bệnh hiểm nghèo X.
b) 0,95 là \(P\left( {B|A} \right)\). Không phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X.
LT4
Trả lời câu hỏi Luyện tập 4 trang 76 SGK Toán 12 Kết nối tri thức
Trong một kho rượu có 30% là rượu loại I. Chọn ngẫu nhiên một chai rượu đưa cho ông Tùng, một người sành rượu, đã nếm thử. Biết rằng, một chai rượu loại I có xác suất 0,9 để ông Tùng xác nhận là loại I; một chai rượu không phải loại I có xác suất 0,95 để ông Tùng xác nhận là đây không phải là loại I. Sau khi nếm, ông Tùng xác nhận đây là rượu loại I. Tính xác suất để chai rượu đúng là rượu loại I.
Phương pháp giải:
Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\).
Lời giải chi tiết:
Gọi A là biến cố: “Chai rượu đúng là rượu loại I”, B là biến cố: “Ông Tùng xác nhận đây là rượu loại I”. Ta cần tính: \(P\left( {A|B} \right)\).
Theo công thức Bayes, ta cần tính: \(P\left( A \right),P\left( {\overline A } \right),P\left( {B|A} \right),P\left( {B|\overline A } \right)\)
Ta có: \(P\left( A \right) = 0,3 \Rightarrow P\left( {\overline A } \right) = 0,7\)
\(P\left( {B|A} \right)\) là xác suất để ông Tùng xác nhận là rượu loại I với điều kiện đây đúng là rượu loại I nên \(P\left( {B|A} \right) = 0,9\)
\(P\left( {B|\overline A } \right)\) là xác suất để ông Tùng xác nhận là rượu loại I với điều kiện đây không phải là rượu loại I. Vì \(P\left( {\overline B |\overline A } \right) = 0,95\) nên \(P\left( {B|\overline A } \right) = 0,05\).
Thay vào công thức Bayes ta có:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,3.0,9}}{{0,3.0,9 + 0,7.0,05}} \approx 0,8852\)
LT5
Trả lời câu hỏi Luyện tập 5 trang 77 SGK Toán 12 Kết nối tri thức
Trở lại tình huống mở đầu Mục 2. Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2%.
a) Trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?
b) Sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?
Phương pháp giải:
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B. Khi đó, ta có công thức sau: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).
Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\).
Lời giải chi tiết:
a) Vì tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2% nên xác suất mắc bệnh hiểm nghèo M của ông X là: \(P\left( A \right) = 0,002\)
b) Theo ví dụ 3, ta có: \(P\left( {A|B} \right) = \frac{{p.0,95}}{{p.0,95 + \left( {1 - p} \right).0,01}}\)
Với \(p = 0,002\) ta có: \(P\left( {A|B} \right) = \frac{{0,002.0,95}}{{0,002.0,95 + \left( {1 - 0,002} \right).0,01}} \approx 0,1599\)
Vậy sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là khoảng 0,1599.
- Giải bài tập 6.7 trang 77 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.8 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.9 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.10 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.11 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức