Giải mục 2 trang 21, 22 Chuyên đề học tập Toán 11 - Chân trời sáng tạo>
Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Khám phá 2
Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.
Phương pháp giải:
Vẽ hình sau đó quan sát và so sánh
Lời giải chi tiết:
Theo đề, ta có \({Đ_O}\left( A \right){\rm{ }} = {\rm{ }}A'.\)
Suy ra O là trung điểm AA’, do đó \(OA{\rm{ }} = {\rm{ }}OA'.\)
Chứng minh tương tự, ta được \(OB{\rm{ }} = {\rm{ }}OB'.\)
Xét \(\Delta OAB\) và \(\Delta OA'B'\), có:
\(OA{\rm{ }} = {\rm{ }}OA'\) (chứng minh trên);
\(\widehat {AOB} = \widehat {A'OB'}\) (đối đỉnh);
\(OB{\rm{ }} = {\rm{ }}OB'\) (chứng minh trên).
Do đó \(\Delta OAB{\rm{ }} = {\rm{ }}\Delta OA'B'{\rm{ }}\left( {c.g.c} \right).\)
Suy ra \(A'B'{\rm{ }} = {\rm{ }}AB\) (cặp cạnh tương ứng).
Vậy \(\Delta OAB{\rm{ }} = {\rm{ }}\Delta OA'B'{\rm{ }}\) và \(A'B'{\rm{ }} = {\rm{ }}AB.\)
Thực hành 2
Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của
a) điểm M(3; –4);
b) đường thẳng d: x – 3y + 6 = 0;
c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.
Phương pháp giải:
Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
Lời giải chi tiết:
a) Gọi M’ là ảnh của M qua ĐO.
Suy ra O là trung điểm của MM’ với \(M\left( {3;{\rm{ }}-4} \right).\)
Do đó \(\left\{ \begin{array}{l}{x_{M'}} = 2{x_O} - {x_M} = 2.0 - 3 = - 3\\{y_{M'}} = 2{y_O} - {y_M} = 2.0 + 4 = 4\end{array} \right.\)
Vậy \(M'\left( {-3;{\rm{ }}4} \right).\)
b) • Chọn \(A\left( {0;{\rm{ }}2} \right) \in d:{\rm{ }}x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)
Gọi A’là ảnh của A qua \({Đ_O}.\)
Suy ra O là trung điểm của AA’ với A(0; 2)
Do đó \(\left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A} = 2.0 - 0 = 0\\{y_{A'}} = 2{y_O} - {y_A} = 2.0 - 2 = - 2\end{array} \right.\)
Vì vậy A’(0; –2).
• Đường thẳng \(d:{\rm{ }}x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\) có vectơ pháp tuyến \({\rm{\vec n}} = \left( {1; - 3} \right)\)
Gọi d’ là ảnh của d qua \({Đ_O}.\)
Suy ra d’ song song hoặc trùng với d, nên d’ nhận vectơ pháp tuyến của d là \({\rm{\vec n}} = \left( {1; - 3} \right)\) làm vectơ pháp tuyến.
Vậy đường thẳng d’ đi qua A’(0; –2) và nhận làm vectơ \({\rm{\vec n}} = \left( {1; - 3} \right)\) pháp tuyến nên có phương trình là:
\(1\left( {x{\rm{ }}-{\rm{ }}0} \right){\rm{ }}-{\rm{ }}3\left( {y{\rm{ }} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0 \Leftrightarrow x-3y-6 = 0.\)
c) Đường tròn \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}\; = {\rm{ }}4\) có tâm I(–2; 1), bán kính R = 2.
Gọi (C’) là ảnh của (C) qua ĐO nên (C’) có tâm là ảnh của I(–2; 1) và có bán kính R’ = R = 2.
Gọi I’= ĐO(I).
Suy ra O là trung điểm \(II'.\)
Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 + 2 = 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 1 = - 1\end{array} \right.\)
Vì vậy tọa độ I’(2; –1).
Vậy đường tròn (C’) là ảnh của (C) qua ĐO, có tâm I’(2; –1) và R’ = 2 nên có phương trình là:
\({\left( {x{\rm{ }}-{\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\; = {\rm{ }}4.\)
Vận dụng 2
Trong Hình 6, tìm các số ghi tại điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9.
Phương pháp giải:
Quan sát hình 6 để tìm
Lời giải chi tiết:
Gọi O là tâm bia.
• Lấy điểm A nằm trong ô có điểm ghi số 20. Lấy A’ đối xứng với A qua O.
Khi đó ta được điểm A’ nằm trong ô có điểm ghi số 8.
• Lấy điểm B nằm trong ô có điểm ghi số 7. Lấy B’ đối xứng với B qua O.
Khi đó ta được điểm B’ nằm trong ô có điểm ghi số 18.
• Lấy điểm C nằm trong ô có điểm ghi số 9. Lấy C’ đối xứng với C qua O.
Khi đó ta được điểm C’ nằm trong ô có điểm ghi số 15.
Vậy điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9 lần lượt là 8; 18; 15.
- Giải mục 3 trang 22, 23 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 2 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 3 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 4 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 7 trang 90 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 6 trang 90 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 9 trang 91 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 8 trang 91 Chuyên đề học tập Toán 11 Chân trời sáng tạo