Giải mục 2 trang 17 SGK Toán 8 – Chân trời sáng tạo>
Lượng nước (y) (tính theo ({m^3})) có trong một bể nước sau (x) giờ mở vòi cấp nước được cho bởi hàm số (y = 2x + 3). Tính lượng nước có trong bể sau 0 giờ; 1 giờ; 2 giờ; 3 giờ; 10 giờ và hoàn thành bảng giá trị sau:
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
Video hướng dẫn giải
HĐ2
Video hướng dẫn giải
Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được cho bởi hàm số \(y = 2x + 3\). Tính lượng nước có trong bể sau 0 giờ; 1 giờ; 2 giờ; 3 giờ; 10 giờ và hoàn thành bảng giá trị sau:
Phương pháp giải:
Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được cho bởi hàm số \(y = 2x + 3\). Do đó, muốn tính lượng nước có trong bể sau \(x = a\) giờ ta tính \(y = f\left( a \right) = 2a + 3\).
Lời giải chi tiết:
+ Với \(x = 0\) giờ \( \Rightarrow y = 2.0 + 3 = 3\left( {{m^3}} \right)\);
+ Với \(x = 1\) giờ \( \Rightarrow y = 2.1 + 3 = 5\left( {{m^3}} \right)\);
+ Với \(x = 2\) giờ \( \Rightarrow y = 2.2 + 3 = 7\left( {{m^3}} \right)\);
+ Với \(x = 3\) giờ \( \Rightarrow y = 2.3 + 3 = 9\left( {{m^3}} \right)\);
+ Với \(x = 10\) giờ \( \Rightarrow y = 2.10 + 3 = 23\left( {{m^3}} \right)\).
Ta có bảng sau
\(x\) |
0 |
1 |
2 |
3 |
10 |
\(y = f\left( x \right) = 2x + 3\) |
3 |
5 |
7 |
9 |
23 |
TH2
Video hướng dẫn giải
Lập bảng giá trị của mỗi hàm số bậc nhất sau:
\(y = f\left( x \right) = 4x - 1\) và \(y = h\left( x \right) = - 0,5x + 8\) với \(x\) lần lượt bằng –3; –2; –1; 0; 1; 2; 3.
Phương pháp giải:
Giá trị của hàm số \(y = f\left( x \right)\) tại giá trị \(x = a\) là \(f\left( a \right)\).
Giá trị của hàm số \(y = h\left( x \right)\) tại giá trị \(x = a\) là \(h\left( a \right)\).
Lời giải chi tiết:
+ Với \(x = - 3\)\( \Rightarrow f\left( { - 3} \right) = 4.\left( { - 3} \right) - 1 = - 13;g\left( { - 3} \right) = - 0,5.\left( { - 3} \right) + 8 = 9,5\);
+ Với \(x = - 2\)\( \Rightarrow f\left( { - 2} \right) = 4.\left( { - 2} \right) - 1 = - 9;g\left( { - 2} \right) = - 0,5.\left( { - 2} \right) + 8 = 9\);
+ Với \(x = - 1\)\( \Rightarrow f\left( { - 1} \right) = 4.\left( { - 1} \right) - 1 = - 5;g\left( { - 1} \right) = - 0,5.\left( { - 1} \right) + 8 = 8,5\);
+ Với \(x = 0\)\( \Rightarrow f\left( 0 \right) = 4.0 - 1 = - 1;g\left( 0 \right) = - 0,5.0 + 8 = 8\);
+ Với \(x = 1\)\( \Rightarrow f\left( 1 \right) = 4.1 - 1 = 3;g\left( 1 \right) = - 0,5.1 + 8 = 7,5\);
+ Với \(x = 2\)\( \Rightarrow f\left( 2 \right) = 4.2 - 1 = 7;g\left( 2 \right) = - 0,5.2 + 8 = 7\);
+ Với \(x = 3\)\( \Rightarrow f\left( 3 \right) = 4.3 - 1 = 11;g\left( 3 \right) = - 0,5.3 + 8 = 6,5\).
Ta có bảng sau:
\(x\) |
–3 |
–2 |
–1 |
0 |
1 |
2 |
3 |
\(y = f\left( x \right) = 4x - 1\) |
–13 |
–9 |
–5 |
–1 |
3 |
7 |
11 |
\(y = g\left( x \right) = - 0,5x + 8\) |
9,5 |
9 |
8,5 |
8 |
7,5 |
7 |
6,5 |
Vận dụng 2
Một xe khách khởi hành từ bến xe phía Bắc bưu điện thành phố Nha Trang để đi ra thành phố Đà Nẵng với tốc độ 40 km/h (Hình 2).
a) Biết rằng bến xe cách bưu điện thành phố Nha Trang 6 km. Sau \(x\) giờ, xe khách cách bưu điện thành phố Nha Trang \(y\)km. Tính \(y\) theo \(x\).
b) Chứng minh rằng \(y\) là một hàm số bậc nhất theo biến \(x\).
c) Hoàn thành bảng giá trị của hàm số ở câu b) và giải thích ý nghĩa của bảng giá trị này:
Phương pháp giải:
- \(s = vt\) với \(s\)là quãng đường; \(v\) là vận tốc và \(t\) là thời gian;
- Định nghĩa hàm số bậc nhất: Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\) với \(a,b\) là các số cho trước và \(a \ne 0\).
- Giá trị của hàm số \(y = f\left( x \right)\) tại giá trị \(x = a\) là \(f\left( a \right)\).
Lời giải chi tiết:
a) Quãng đường xe khách đi được sau \(x\) giờ với vận tốc 40 km/h là \(40.x\) (km)
Vì ban đầu bến xe cách bưu điện Nha Trang 6 km nên sau \(x\) giờ xe khách cách bưu điện thành phố Nha Trang số km là: \(40x + 6\). Do đó, \(y = 40x + 6\) với \(y\) là số km xe khách cách bưu điện thành phố Nha Trang sau \(x\) giờ.
b) Vì hàm số \(y = 40x + 6\) có dạng \(y = ax + b\) với \(a = 40;b = 6\) nên \(y\) là một hàm số bậc nhất theo biến \(x\).
c)
- Với \(x = 0 \Rightarrow y = f\left( 0 \right) = 40.0 + 6 = 6\);
- Với \(x = 1 \Rightarrow y = f\left( 1 \right) = 40.1 + 6 = 46\);
- Với \(x = 2 \Rightarrow y = f\left( 2 \right) = 40.2 + 6 = 86\);
- Với \(x = 3 \Rightarrow y = f\left( 3 \right) = 40.3 + 6 = 126\);
Ta có bảng sau:
\(x\) |
0 |
1 |
2 |
3 |
\(y\) |
6 |
46 |
86 |
126 |
Bảng này thể hiện khoảng cách của xe khách so với bưu điện Nha Trang sau 0 giờ; 1 giờ; 2 giờ; 3 giờ.
- Giải mục 3 trang 18, 19, 20, 21 SGK Toán 8 – Chân trời sáng tạo
- Giải Bài 1 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 2 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 3 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 4 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo