Giải mục 1 trang 97, 98, 99, 100 SGK Toán 12 tập 2 - Cánh diều


Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra. Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

Trả lời câu hỏi Bài toán mở đầu trang 97 SGK Toán 12 Cánh diều

Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra. Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Phương pháp giải:

Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Lời giải chi tiết:

Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)

Theo công thức xác suất toàn phần ta có:

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).

Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 97 SGK Toán 12 Cánh diều

Một hộp có 24 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 24; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên 1 chiếc thẻ trong hộp. Xét biến cố A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và biến cố B: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 4”.

a) Viết các tập con của không gian mẫu tương ứng với các biến cố A, B, \(A \cap B,A \cap \overline B \) (Hình 2).

b) So sánh n(A) và \(n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\). Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\).

c) So sánh \(P\left( {A \cap B} \right)\) và \(P\left( B \right).P\left( {A|B} \right)\);

\(P\left( {A \cap \overline B } \right)\) và \(P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Phương pháp giải:

+ Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).

+ Sử dụng kiến thức về công thức tính xác suất của hai biến cố xung khắc: Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải chi tiết:

a) \(A = \left\{ {3;{\rm{ }}6;{\rm{ }}9;{\rm{ }}12;{\rm{ }}15;{\rm{ }}18;{\rm{ }}21;{\rm{ }}24} \right\},B = \left\{ {4;{\rm{ }}8;{\rm{ }}12;{\rm{ }}16;{\rm{ }}20;{\rm{ }}24} \right\}\), \(\Omega  = \left\{ {1;2;3;...;24} \right\}\)\(A \cap B = \left\{ {12;24} \right\},A \cap \overline B  = \left\{ {3;6;9;15;18;21} \right\}\).

b) Ta có: \(n\left( A \right) = 8,n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right) = 2 + 6 = 8\) nên \(n\left( A \right) = n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\).

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)}}{{n\left( \Omega  \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( \Omega  \right)}} + \frac{{n\left( {A \cap \overline B } \right)}}{{n\left( \Omega  \right)}} = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\)

c) Ta có: \(P\left( B \right).P\left( {A|B} \right) = P\left( B \right).\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = P\left( {A \cap B} \right)\);

\(P\left( {\overline B } \right).P\left( {A|\overline B } \right) = P\left( {\overline B } \right).\frac{{P\left( {A \cap \overline B } \right)}}{{P\left( {\overline B } \right)}} = P\left( {A \cap \overline B } \right)\).

Vì \(A \cap B,A \cap \overline B \) là hai biến cố xung khắc nên \(\left( {A \cap B} \right) \cup \left( {A \cap \overline B } \right) = A\), theo công thức xác suất ta có: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

LT1

Trả lời câu hỏi Luyện tập 1 trang 99 SGK Toán 12 Cánh diều

Hãy giải bài toán mở đầu bằng cách lập bảng thống kê như trong Ví dụ 2, biết rằng cả hai nhà máy sản xuất được 10 000 linh kiện.

Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.

Phương pháp giải:

Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Lời giải chi tiết:

Số linh kiện do nhà máy I sản xuất là: \(10\;000.55\%  = 5\;500\) (linh kiện).

Số linh kiện do nhà máy II sản xuất là: \(10\;000.45\%  = 4\;500\) (linh kiện).

Số linh do nhà máy I sản xuất đạt tiêu chuẩn là:

\(5\;500.90\%  = 4\;950\) (linh kiện).

Số linh do nhà máy I sản xuất không đạt tiêu chuẩn là: \(5\;500 - 4\;950 = 550\) (linh kiện).

Số linh do nhà máy II sản xuất đạt tiêu chuẩn là: \(4\;500.87\%  = 3\;915\) (linh kiện).

Số linh do nhà máy II sản xuất không đạt tiêu chuẩn là: \(4\;500 - 3\;915 = 585\) (linh kiện).

Ta có bảng thống kê như sau:

Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\).

Theo công thức xác suất toàn phần ta có:

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).

Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.

LT2

Trả lời câu hỏi Luyện tập 2 trang 100 SGK Toán 12 Cánh diều

Hãy giải bài toán mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.

Phương pháp giải:

+ Sử dụng kiến thức sơ đồ hình cây để tính.

 + Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Lời giải chi tiết:

Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)

Sơ đồ hình cây biểu thị tình huống đã cho:

p

Theo công thức xác suất toàn phần ta có:

\(P\left( A \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).

Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 2 trang 100, 101 SGK Toán 12 tập 2 - Cánh diều

    Xét hai biến cố A, B trong Hoạt động 1. a) Tính P(A), P(B), \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). b) So sánh: \(P\left( {B|A} \right)\) và \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).

  • Giải bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều

    Cho hai biến cố A, B với \(P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4\). Khi đó, \(P\left( A \right)\) bằng A. 0,7. B. 0,4. C. 0,58. D. 0,52.

  • Giải bài tập 2 trang 102 SGK Toán 12 tập 2 - Cánh diều

    Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên một viên bi từ hộp II. a) Tính xác suất để viên bi được lấy ra là viên bi màu trắng. b) Giả sử viên bi được lấy ra là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.

  • Giải bài tập 3 trang 102 SGK Toán 12 tập 2 - Cánh diều

    Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. a) Tính xác suất để linh kiện được lấy ra là linh kiện tốt. b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

  • Giải bài tập 4 trang 102 SGK Toán 12 tập 2 - Cánh diều

    Năm 2001, Cộng đồng châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Không có xét nghiệm nào cho kết quả chính xác 100%. Một loại xét nghiệm, mà ở đây ta gọi là xét nghiệm A, cho kết quả như sau: khi con bò bị bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70%, còn khi con bò không bị bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%. Biết rằng tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí