Giải mục 1 trang 60, 61 SGK Toán 12 tập 1 - Kết nối tri thức>
Hệ trục tọa độ trong không gian
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
HĐ1
Trả lời câu hỏi Hoạt động 1 trang 60 SGK Toán 12 Kết nối tri thức
Trong không gian, xét ba trục Ox, Oy, Oz có chung gốc O và đôi một vuông góc với nhau. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) là các vectơ đơn vị trên các trục đó (H.2.35).
a) Gọi tên các mặt phẳng tọa độ có trong Hình 2.35.
b) Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?
Phương pháp giải:
Sử dụng kiến thức về hai mặt phẳng vuông góc để chứng minh: Nếu mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau.
Lời giải chi tiết:
a) Các mặt phẳng có trong hình vẽ là: Mặt phẳng (Oxy), (Oyz), (Ozx).
b) Vì \(Ox \bot Oy,Oy \bot Oz\), Ox và Oz cắt nhau tại O và nằm trong mặt phẳng (Oxz) nên \(Oy \bot \left( {Oxz} \right)\). Mà \(Oy \subset \left( {Oxy} \right) \Rightarrow \left( {Oxz} \right) \bot \left( {Oxy} \right),Oy \subset \left( {Oyz} \right) \Rightarrow \left( {Oyz} \right) \bot \left( {Oxz} \right)\)
Chứng minh tương tự ta có: \(\left( {Oyz} \right) \bot \left( {Oxy} \right)\)
Vậy ba mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau.
CH
Trả lời Câu hỏi trang 61 SGK Toán 12 Kết nối tri thức
Góc căn phòng trong Hình 2.34 có gợi lên hình ảnh về hệ tọa độ Oxyz trong không gian hay không? Nếu có hãy mô tả gốc tọa độ và các mặt phẳng tọa độ trong hình ảnh đó.
Phương pháp giải:
Sử dụng kiến thức hệ về hệ tọa độ trong không gian để mô tả: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.
Lời giải chi tiết:
Góc căn phòng trong Hình 2.34 gợi lên hình ảnh về hệ trục tọa độ Oxyz trong không gian.
Mô tả: Hệ tọa độ Oxyz có:
+ Mặt phẳng (Oxy) là sàn nhà, hai mặt phẳng (Oyz), (Ozx) hai bức tường. Khi đó, ba mặt phẳng đôi một vuông góc với nhau.
+ Gốc tọa độ O (trùng với một góc phòng) là giao điểm của ba trục Ox, Oy, Oz.
LT1
Trả lời câu hỏi Luyện tập 1 trang 61 SGK Toán 12 Kết nối tri thức
Cho hình hộp chữ nhật ABCD.A’B’C’D’. Có thể lập một hệ tọa độ Oxyz có gốc O trùng với đỉnh C và các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt cùng hướng với các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC'} \) không? Vì sao?
Phương pháp giải:
Sử dụng kiến thức về hệ tọa độ trong không gian để mô tả: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.
Lời giải chi tiết:
Vì ABCD. A’B’C’D’ là hình hộp chữ nhật nên các cạnh CC’, CB và CD đôi một vuông góc với nhau.
Các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC'} \) cùng có điểm đầu là C.
Do đó, suy ra có thể lập một hệ tọa độ Oxyz có gốc O trùng với đỉnh C và các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt cùng hướng với các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC'} \).
- Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.13 trang 64 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.14 trang 64 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.15 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.16 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức