Giải bài tập 7 trang 88 SGK Toán 12 tập 2 - Cánh diều>
Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau: a) (S) có tâm I(4; -2; 1) và bán kính \(R = 9\); b) (S) có tâm I(3; 2; 0) và đi qua điểm M(2; 4; -1); c) (S) có đường kính là đoạn thẳng AB với A(1; 2; 0) và B(-1; 0; 4).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(4; -2; 1) và bán kính \(R = 9\);
b) (S) có tâm I(3; 2; 0) và đi qua điểm M(2; 4; -1);
c) (S) có đường kính là đoạn thẳng AB với A(1; 2; 0) và B(-1; 0; 4).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để tính: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right)\), bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
a) (S) có tâm I(4; -2; 1), bán kính \(R = 9\) có phương trình là \({\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 81\)
b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( { - 1 - 0} \right)}^2}} = \sqrt 6 \) nên phương trình mặt cầu (S) là: \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 6\).
c) Gọi I là trung điểm của AB nên \(I\left( {0;1;2} \right)\).
Vì mặt cầu (S) có đường kính là AB nên (S) có tâm \(I\left( {0;1;2} \right)\), bán kính \(R = IA = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} = \sqrt 6 \)
Do đó, phương trình mặt cầu (S) là: \({x^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 6\).
- Giải bài tập 8 trang 88 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 10 trang 88 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 11 trang 88 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục