Giải bài tập 6.32 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức>
Một ô tô khách khởi hành từ Hà Nội đi Hải Phòng. Sau đó 30 phút, một ô tô con xuất phát từ cùng địa điểm ở Hà Nội và cũng đi về Hải Phòng trên cùng tuyến đường, với vận tốc lớn hơn vận tốc của ô tô khách là 20km/h. Hai xe đến cùng một địa điểm ở Hải Phòng tại một thời điểm. Hãy tìm vận tốc của mỗi ô tô, biết rằng quãng đường Hà Nội – Hải Phòng dài khoảng 120km.
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Một ô tô khách khởi hành từ Hà Nội đi Hải Phòng. Sau đó 30 phút, một ô tô con xuất phát từ cùng địa điểm ở Hà Nội và cũng đi về Hải Phòng trên cùng tuyến đường, với vận tốc lớn hơn vận tốc của ô tô khách là 20km/h. Hai xe đến cùng một địa điểm ở Hải Phòng tại một thời điểm. Hãy tìm vận tốc của mỗi ô tô, biết rằng quãng đường Hà Nội – Hải Phòng dài khoảng 120km.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập phương trình:
Bước 1. Lập phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Gọi vận tốc của ô tô khách là x (km/h), điều kiện: \(x > 0\).
Vận tốc của ô tô con là \(x + 20\left( {km/h} \right)\).
Thời gian ô tô khách đi quãng đường Hà Nội – Hải Phòng là: \(\frac{{120}}{x}\) (giờ)
Thời gian ô tô con đi quãng đường Hà Nội – Hải Phòng là: \(\frac{{120}}{{x + 20}}\) (giờ)
Vì xe ô tô khách xuất phát trước ô tô con 30 phút \( = \frac{1}{2}\)giờ nên ta có phương trình:
\(\frac{{120}}{{x + 20}} + \frac{1}{2} = \frac{{120}}{x}\)
Quy đồng mẫu số hai vế của phương trình ta được:
\(\frac{{240x}}{{2x\left( {x + 20} \right)}} + \frac{{x\left( {x + 20} \right)}}{{2x\left( {x + 20} \right)}} = \frac{{240\left( {x + 20} \right)}}{{2x\left( {x + 20} \right)}}\)
Nhân cả hai vế của phương trình với \(2x\left( {x + 20} \right)\) để khử mẫu ta được phương trình bậc hai:
\(240x + x\left( {x + 20} \right) = 240\left( {x + 20} \right)\)
\(240x + {x^2} + 20x = 240x + 4800\)
\({x^2} + 20x - 4800 = 0\)
Ta có: \(\Delta ' = {10^2} + 4800 = 4900 > 0 \Rightarrow \sqrt {\Delta '} = 70\), phương trình có hai nghiệm phân biệt
\({x_1} = - 10 + 70 = 60\left( {tm} \right),{x_2} = - 10 - 70 = - 80\left( {ktm} \right)\)
Vậy vận tốc của ô tô khách là 60km/h, vận tốc của ô tô con là: \(60 + 20 = 80\left( {km/h} \right)\).
- Giải bài tập 6.33 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.31 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.30 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.29 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.28 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục