Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau: a) Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn? b) Nếu so sánh theo khoảng tứ phân vị thì học sinh trường nào có tốc độ viết đồng đều hơn? c) Nếu so sánh theo độ lệch chuẩn thì học sinh trường nào có tốc độ viết đồng đều hơn?
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau:
a) Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn?
b) Nếu so sánh theo khoảng tứ phân vị thì học sinh trường nào có tốc độ viết đồng đều hơn?
c) Nếu so sánh theo độ lệch chuẩn thì học sinh trường nào có tốc độ viết đồng đều hơn?
Phương pháp giải - Xem chi tiết
Số trung bình nhỏ hơn thì học sinh trường đó viết nhanh hơn
Khoảng tứ phân vị nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn
Độ lệch chuẩn nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn
Lời giải chi tiết
a) Cỡ mẫu: n = 50
Xét số liệu của trường X:
Số trung bình: \(\overline {{x_X}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\)
Xét số liệu của trường Y:
Số trung bình: \(\overline {{x_Y}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\)
Vậy nếu so sánh theo số trung bình thì học sinh trường Y viết nhanh hơn
b) Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường X được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{\rm{ }}{x_8} \in [6;7)\); \({x_9}; \ldots ;{\rm{ }}{x_{18}} \in [7;8)\);\({x_{19}}; \ldots ;{\rm{ }}{x_{31}} \in [8;9)\);\({x_{32}}; \ldots ;{\rm{ }}{x_{41}} \in [9;10)\);\({x_{42}}; \ldots ;{\rm{ }}{x_{50}} \in [10;11)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 7 + \frac{{\frac{{50}}{4} - 8}}{{10}}(8 - 7) = 7,45\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 9 + \frac{{\frac{{3.50}}{4} - (8 + 10 + 13)}}{{10}}(10 - 9) = 9,65\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 2,2\)
Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường Y được xếp theo thứ tự không giảm.
Ta có: \({y_1}; \ldots ;{\rm{ }}{y_4} \in [6;7)\); \({y_5}; \ldots ;{\rm{ }}{y_{16}} \in [7;8)\);\({y_{17}}; \ldots ;{\rm{ }}{y_{33}} \in [8;9)\);\({y_{34}};...;{y_{47}} \in [9;10)\);\({y_{48}};...;{y_{50}} \in [10;11)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}' = 7 + \frac{{\frac{{50}}{4} - 4}}{{12}}(8 - 7) = \frac{{185}}{{24}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}' = 9 + \frac{{\frac{{3.50}}{4} - (4 + 12 + 17)}}{{14}}(10 - 9) = \frac{{261}}{{28}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}' = {Q_3}' - {Q_1}' = \frac{{271}}{{168}}\)
Vậy nếu so sánh theo khoảng tứ phân vị thì học sinh trường Y có tốc độ viết đồng đều hơn
c) Xét số liệu của trường X:
Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{8.6,{5^2} + 10.7,{5^2} + 13.8,{5^2} + 10.9,{5^2} + 9.10,{5^2}}}{{50}} - 8,{{54}^2}} \approx 1,33\)
Xét số liệu của trường Y:
Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{4.6,{5^2} + 12.7,{5^2} + 17.8,{5^2} + 14.9,{5^2} + 3.10,{5^2}}}{{50}} - 8,{5^2}} \approx 1,04\)
Vậy nếu so sánh theo độ lệch chuẩn thì học sinh trường Y có tốc độ viết đồng đều hơn
- Giải bài tập 7 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 8 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo