Giải bài tập 5.44 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức


Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y - 2z - 3 = 0\) và đường thẳng d: \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 1}}\). Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y - 2z - 3 = 0\) và đường thẳng d: \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 1}}\). Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương để viết phương trình: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Lời giải chi tiết

Đường thẳng d nhận \(\overrightarrow {{u_1}} \left( {2;1; - 1} \right)\) làm một vectơ chỉ phương và đi qua điểm \(A\left( {1; - 1;0} \right)\).

Mặt phẳng (P) nhận \(\overrightarrow n \left( {1; - 2; - 2} \right)\) làm một vectơ pháp tuyến.

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow n } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 2}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&{ - 2}\end{array}} \right|} \right) = \left( { - 4;3; - 5} \right)\)

Vì mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P) nên mặt phẳng (Q) nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow n } \right] = \left( { - 4;3; - 5} \right)\) làm một vectơ pháp tuyến. Mà điểm \(A\left( {1; - 1;0} \right)\) thuộc mặt phẳng (Q) nên phương trình mặt phẳng (Q) là: \( - 4\left( {x - 1} \right) + 3\left( {y + 1} \right) - 5z = 0 \Leftrightarrow  - 4x + 3y - 5z + 7 = 0\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 5.45 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{2} = \frac{z}{{ - 1}}\) và \(d':\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z + 1}}{2}\). Viết phương trình mặt phẳng (P) chứa đường thẳng d và song song với đường thẳng d’.

  • Giải bài tập 5.46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q).

  • Giải bài tập 5.47 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng d: \(\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}}\) và \(d':\left\{ \begin{array}{l}x = 1 - t\\y = - 2 + t\\z = 2t\end{array} \right.\). a) Xác định vị trí tương đối của hai đường thẳng d và d’. b) Tính góc giữa d và d’.

  • Giải bài tập 5.48 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc tạo bởi đường thẳng d: \(\frac{{x + 3}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 1}}{1}\) và mặt phẳng (P): \(x + y - 2z + 3 = 0\).

  • Giải bài tập 5.49 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc giữa mặt phẳng (P): \(x + y + z - 1 = 0\) và mặt phẳng Oxy.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí