Giải bài tập 4 trang 95 SGK Toán 12 tập 2 - Cánh diều>
Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Đề bài
Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”, B là biến cố: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, \(A \cap B\) là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Các kết quả thuận lợi của biến cố B là: (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (4; 6) nên \(n\left( B \right) = 6\). Do đó, \(P\left( B \right) = \frac{6}{{6.6}} = \frac{1}{6}\).
Kết quả thuận lợi của biến cố \(A \cap B\) là: (4; 2) nên \(n\left( {A \cap B} \right) = 1.\) Do đó, \(P\left( {A \cap B} \right) = \frac{1}{{36}}\).
Khi đó: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).
Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm là \(\frac{1}{6}\).
- Giải bài tập 5 trang 95 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 7 trang 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 8 trang 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 3 trang 95 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục