Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Cánh diều>
Tìm a) \(\int {2x({x^3}} - x + 2)dx\) b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\) c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx\) d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx\) e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx\) g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx\)
Đề bài
Tìm
a) \(\int {2x({x^3}} - x + 2)dx\)
b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\)
c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx\)
d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx\)
e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx\)
g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx\)
Phương pháp giải - Xem chi tiết
Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K
Lời giải chi tiết
a) \(\int {2x({x^3}} - x + 2)dx = \int {\left( {2{x^3} - 2{x^2} + 4x} \right)} dx = \frac{{{x^2}}}{2} - \frac{{2{x^3}}}{3} + 2{x^2} + C\)
b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx = {x^2} - \frac{1}{{2{x^2}}} + C\)
c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx = \int {\left( {1 + 2(1 + {{\tan }^2}x)} \right)} dx = \int {(1 + } \frac{2}{{{{\cos }^2}x}})dx = x + 2\tan x + C\)
d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx = \int {(4 - 3(1 + {{\cot }^2}} x))dx = \int {\left( {4 - \frac{3}{{{{\sin }^2}x}}} \right)dx = 4x + 3\cot x + C} \)
e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx = - \cos x - \frac{{{2^{ - x + 1}}}}{{\ln 2}} + C\)
g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx = \frac{{{6^{2x}}}}{{\ln 6}} - {e^{ - x + 1}} + C\)
- Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 7 trang 42 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 8 trang 43 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 9 trang 43 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục