Giải bài tập 3 trang 81 SGK Toán 9 tập 1 - Cánh diều


Cho tam giác (MNP) có (MN = 5cm,MP = 12cm,NP = 13cm). Chứng minh tam giác (MNP) vuông tại (N). Từ đó, tính các tỉ số lượng giác của góc (N).

Đề bài

Cho tam giác \(MNP\) có \(MN = 5cm,MP = 12cm,NP = 13cm\). Chứng minh tam giác \(MNP\) vuông tại \(N\). Từ đó, tính các tỉ số lượng giác của góc \(N\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pythagore đảo để chứng minh tam giác \(MNP\) vuông tại \(N\).

Dựa vào định nghĩa tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

 

Xét tam giác \(MNP\) có:

\(M{N^2} + M{P^2} = {5^2} + {12^2} = 169\).

\(N{P^2} = {13^2} = 169\).

\( \Rightarrow \Delta MNP\) vuông tại \(M\) (Định lý Pythagore đảo).

\(\sin N = \frac{{MP}}{{NP}} = \frac{{12}}{{13}}\).

\(\cos N = \frac{{MN}}{{NP}} = \frac{5}{{13}}\).

\(\tan N = \frac{{MP}}{{MN}} = \frac{{12}}{5}\).

\(\cot N = \frac{{MN}}{{MP}} = \frac{5}{{12}}\).


Bình chọn:
3 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí