Giải bài tập 2.34 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức


Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng A. \(\frac{{ - 2\sqrt 2 }}{3}\). B. \(\frac{{2\sqrt 2 }}{3}\). C. \(\frac{{\sqrt 2 }}{3}\). D. \(\frac{{ - \sqrt 2 }}{3}\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng
A. \(\frac{{ - 2\sqrt 2 }}{3}\).
B. \(\frac{{2\sqrt 2 }}{3}\).
C. \(\frac{{\sqrt 2 }}{3}\).
D. \(\frac{{ - \sqrt 2 }}{3}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về côsin góc của 2 vectơ trong không gian để tính: Nếu \(\overrightarrow a  = \left( {x;y;z} \right)\) và \(\overrightarrow b  = \left( {x';y';z'} \right)\) là hai vectơ khác \(\overrightarrow 0 \) thì \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{xx' + yy' + zz'}}{{\sqrt {{x^2} + {y^2} + {z^2}} .\sqrt {x{'^2} + y{'^2} + z{'^2}} }}\)

Lời giải chi tiết

\(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).1 + 2.\left( { - 1} \right) + 2.\left( { - 2} \right)}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {2^2} + } .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{ - 2\sqrt 2 }}{3}\)

Chọn A


Bình chọn:
4 trên 7 phiếu
  • Giải bài tập 2.35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

  • Giải bài tập 2.36 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho tứ diện ABCD, lấy hai điểm M, N thỏa mãn (overrightarrow {MB} + 2overrightarrow {MA} = overrightarrow 0 ) và (overrightarrow {NC} = 2overrightarrow {DN} ). Hãy biểu diễn (overrightarrow {MN} ) theo (overrightarrow {AD} ) và (overrightarrow {BC} ).

  • Giải bài tập 2.37 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình hộp ABCD.A’B’C’D’, gọi G là trọng tâm của tam giác BDA’. a) Biểu diễn \(\overrightarrow {AG} \) theo \(\overrightarrow {AB} ,\overrightarrow {AD} \) và \(\overrightarrow {AA'} \). b) Từ câu a, hãy chứng tỏ ba điểm A, G và C’ thẳng hàng.

  • Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\). a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). b) Tính độ dài vectơ \(\overrightarrow u \). c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).

  • Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí