

Giải bài tập 2.26 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức>
Cho hình hộp ABCD.A’B’C’D’. Lấy M là trung điểm của đoạn thẳng CC’. Vectơ (overrightarrow {AM} ) bằng A. (overrightarrow {AB} + overrightarrow {AD} + overrightarrow {AA'} ). B. (overrightarrow {AB} + overrightarrow {AD} + frac{1}{2}overrightarrow {AA'} ). C. (overrightarrow {AB} + frac{1}{2}overrightarrow {AD} + frac{1}{2}overrightarrow {AA'} ). D. (frac{1}{2}overrightarrow {AB} + overrightarrow {AD} + overrightarrow {AA'} ).
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hình hộp ABCD.A’B’C’D’. Gọi M là trung điểm của đoạn thẳng CC’. Vectơ \(\overrightarrow {AM} \) bằng
A. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA'} \).
C. \(\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA'} \).
D. \(\frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về trung điểm của đoạn thẳng để chứng minh: Nếu I là trung điểm của đoạn thẳng AB, với điểm M tùy ý ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \).
Sử dụng kiến thức về quy tắc hình hộp để chứng minh: Cho hình hộp ABCD.A’B’C’D’. Khi đó, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).
Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Lời giải chi tiết
Vì M là trung điểm của CC’ nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AC'} + \overrightarrow {AC} } \right) = \frac{1}{2}\left( {\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AB} + \overrightarrow {AD} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AA'} + 2\overrightarrow {AB} + 2\overrightarrow {AD} } \right) = \frac{1}{2}\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \).
Chọn B.


- Giải bài tập 2.27 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.28 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.29 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức