Giải bài tập 2 trang 80 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng. Kết quả khảo sát như sau:
Đề bài
Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng. Kết quả khảo sát như sau:
Gặp ngẫu nhiên một công nhân của nhà máy. Gọi
\(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và \(B\) là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”.
a) Xác suất của biến cố \(A\) là
A. \(\frac{{37}}{{140}}\)
B. \(\frac{{37}}{{50}}\)
C. \(\frac{5}{{14}}\)
D. \(\frac{1}{2}\)
b) Xác suất của biến cố \(A\) với điều kiện \(B\) là:
A. \(0,37\)
B. \(0,5\)
C. \(\frac{{37}}{{50}}\)
D. \(\frac{5}{{14}}\)
c) Xác suất của biến cố \(B\) với điều kiện \(A\) không xảy ra là:
A. \(\frac{2}{7}\)
B. \(0,9\)
C. \(0,7\)
D. \(\frac{9}{{20}}\)
Phương pháp giải - Xem chi tiết
a) Tính tổng số công nhân trong nhà máy và số công nhân ở phân xưởng I, từ đó tính xác suất \(P\left( A \right)\) của biến cố \(A\).
b) Xác suất cần tính là \(P\left( {A|B} \right)\), có nghĩa là tính xác suất công nhân đó làm việc tại phân xưởng I, nếu công nhân đó hài lòng với điều kiện làm việc tại phân xưởng.
c) Xác suất cần tính là \(P\left( {B|\bar A} \right)\), có nghĩa là tính xác suất công nhân đó hài lòng với điều kiện làm việc tại phân xưởng, nếu công nhân đó không làm việc tại phân xưởng I (đồng nghĩa công nhân đó làm việc tại phân xưởng II).
Lời giải chi tiết
a) Tổng số công nhân trong nhà máy là \(37 + 63 + 13 + 27 = 140\) người.
Số công nhân trong nhà máy làm việc tại phân xưởng I là \(37 + 13 = 50\) người.
Vậy xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{50}}{{140}} = \frac{5}{{14}}\).
Vậy đáp án đúng là C.
b) Xác suất cần tính là \(P\left( {A|B} \right)\), có nghĩa là tính xác suất công nhân đó làm việc tại phân xưởng I, nếu công nhân đó hài lòng với điều kiện làm việc tại phân xưởng.
Trong nhà máy, số công nhân hài lòng với điều kiện làm việc tại phân xưởng là \(37 + 63 = 100\) người, trong đó có 37 người làm ở phân xưởng I. Như vậy \(P\left( {A|B} \right) = \frac{{37}}{{100}} = 0,37\).
Vậy đáp án đúng là A.
c) Xác suất cần tính là \(P\left( {B|\bar A} \right)\), có nghĩa là tính xác suất công nhân đó hài lòng với điều kiện làm việc tại phân xưởng, nếu công nhân đó không làm việc tại phân xưởng I (đồng nghĩa công nhân đó làm việc tại phân xướng II).
Trong nhà máy có \(63 + 27 = 90\) công nhân làm việc tại phân xưởng II, trong đó có 63 người hài lòng với điều kiện làm việc của phân xưởng. Do đó \(P\left( {B|\bar A} \right) = \frac{{63}}{{90}} = 0,7\).
Vậy đáp án đúng là C.
- Giải bài tập 3 trang 80 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 4 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo