Giải bài tập 1 trang 85 SGK Toán 12 tập 2 - Cánh diều>
Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là: A. \(\left( { - 2; - 3;4} \right)\). B. \(\left( {2;3; - 4} \right)\). C. \(\left( {2; - 3; - 4} \right)\). D. \(\left( {2; - 3;4} \right)\).
Đề bài
Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là:
A. \(\left( { - 2; - 3;4} \right)\).
B. \(\left( {2;3; - 4} \right)\).
C. \(\left( {2; - 3; - 4} \right)\).
D. \(\left( {2; - 3;4} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để tìm tọa độ tâm của mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right),\) bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Ta có: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - \left( { - 4} \right)} \right)^2} = 16\).
Do đó, tâm của mặt cầu (S) có tọa độ \(\left( {2;3; - 4} \right)\).
Chọn B
- Giải bài tập 2 trang 85 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 3 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 4 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục