Giải bài 9 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo>
Cho tam giác
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho tam giác \(ABC\) cân tại \(A\). Gọi \(H\), \(D\) lần lượt là trung điểm của các cạnh \(BC\) và \(AB\)
a) Chứng minh rằng tứ giác \(ADHC\) là hình thang
b) Gọi \(E\) là điểm đối xứng với \(H\) qua \(D\). Chứng minh rằng tứ giác \(AHBE\) là hình chữ nhật
c) Tia \(CD\) cắt \(AH\) tại \(M\) và cắt \(BE\) tại \(N\). Chứng minh rằng tứ giác \(AMBN\) là hình bình hành.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Áp dụng dấu hiệu nhận biết của hình thang
b) Áp dụng dấu hiệu nhận biết của hình chữ nhật
c) Áp dụng dấu hiệu nhận biết của hình bình hành
Lời giải chi tiết
a) Vì \(\Delta ABC\) cân tại \(A\) nên \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Vì \(\Delta ABC\) cân tại \(A\), có \(AH\) là trung tuyến (gt)
Suy ra \(AH\) là đường cao
Suy ra \(AH \bot BC\)
Suy ra \(\widehat {{\rm{AHB}}} = \widehat {{\rm{AHC}}} = 90^\circ \)
Xét \(\Delta AHB\) vuông tại \(H\) ta có: \(HD\) là trung tuyến
Suy ra \(HD = \frac{1}{2}AB\)
Mà \(DA = DB = \frac{1}{2}AB\) (do \(D\) là trung điểm \(AB\))
Suy ra \(DA = DB = HD\)
Suy ra \(\Delta DHB\) cân tại \(D\)
Suy ra \(\widehat {{\rm{ABC}}} = \widehat {{\rm{DHB}}}\)
Mà \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
Suy ra \(\widehat {{\rm{DHB}}} = \widehat {{\rm{ACB}}}\)
Mà hai góc ở vị trí đồng vị
Suy ra \(DH\) // \(AC\)
Suy ra \(ADHC\) là hình thang
b) Vì \(E\) đối xứng với \(H\) qua \(D\) (gt)
Suy ra \(D\) là trung điểm của \(HE\)
Xét tứ giác \(AHBE\) ta có:
Hai đường chéo \(HE\) và \(AB\) cắt nhau tại trung điểm \(D\)
Suy ra \(AHBE\) là hình bình hành
Mà \(\widehat {{\rm{AHB}}} = 90^\circ \) (cmt)
Suy ra \(AHBE\) là hình chữ nhật
c) Vì \(AHBE\) là hình chữ nhật (cmt)
Suy ra \(AH\) // \(BE\) và \(AH = BE\)
Xét \(\Delta DEN\) và \(\Delta DHM\) ta có:
\(\widehat {{\rm{NED}}} = \widehat {{\rm{DHM}}}\) (do \(BE\) // \(AH\))
\(DE = DH\) (do \(D\) là trung điểm của \(HE\))
\(\widehat {{\rm{EDN}}} = \widehat {{\rm{MDH}}}\) (đối đỉnh)
Suy ra \(\Delta DEN = \Delta DHM\) (g-c-g)
Suy ra \(EN = MH\) (hai cạnh tương ứng)
Mà \(BE = AH\) (cmt)
Suy ra \(BE - EN = AH - MH\)
Suy ra \(NB = AM\)
Mà \(NB\) // \(AM\) (do \(EB\) // \(AH\))
Suy ra \(AMBN\) là hình bình hành
- Giải bài 10 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 11 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 12 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 8 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 7 trang 88 SGK Toán 8 tập 1– Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo