Giải bài 9 trang 69 sách bài tập toán 11 - Cánh diều


Tính các giới hạn sau:

Đề bài

Tính các giới hạn sau:

a) \(\lim \frac{{6n - 5}}{{3n}}\)

b) \(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}}\)

c) \(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)

d) \(\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}}\)

e) \(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}}\)

g) \(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Ta có: \(\lim \frac{{6n - 5}}{{3n}} = \lim \frac{{n\left( {6 - \frac{5}{n}} \right)}}{{3n}} = \lim \frac{{6 - \frac{5}{n}}}{3} = \frac{{\lim 6 - \lim \frac{5}{n}}}{{\lim 3}} = \frac{6}{3} = 2\)

b) Ta có:

\(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}} = \lim \frac{{{n^2}\left( { - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}} \right)}}{{{n^2}\left( {8 - \frac{5}{n} + \frac{4}{{{n^2}}}} \right)}} = \lim \frac{{ - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}}}{{8 - \frac{5}{n} + \frac{4}{{{n^2}}}}}\)

\( = \frac{{\lim \left( { - 2} \right) - \lim \frac{6}{n} + \lim \frac{2}{{{n^2}}}}}{{\lim 8 - \lim \frac{5}{n} + \lim \frac{4}{{{n^2}}}}} = \frac{{ - 2}}{8} = \frac{{ - 1}}{4}\)

c) Ta có:

\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)

Vì \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = \lim 1 - \lim \frac{5}{{{n^2}}} + \lim \frac{1}{{{n^3}}} = 1 - 0 + 0 = 1\),

Và \(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = \lim \frac{3}{n} - \lim \frac{4}{{{n^2}}} + \lim \frac{2}{{{n^3}}} = 0\).

Ta suy ra:

\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}} =  + \infty \)

d) Ta có:

\(\begin{array}{l}\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}} = \lim \frac{{{n^2}\left( {\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {9 - \frac{1}{n} + \frac{2}{{{n^2}}}} \right)}} = \lim \frac{{\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}}}{{9 - \frac{1}{n} + \frac{2}{{{n^2}}}}} = \frac{{\lim \frac{{ - 4}}{n} + \lim \frac{1}{{{n^2}}}}}{{\lim 9 - \lim \frac{1}{n} + \lim \frac{2}{{{n^2}}}}}\\ = 0\end{array}\)

e) Ta có:

\(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}} = \lim \frac{{\sqrt {{n^2}\left( {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)} }}{{n\left( {8 + \frac{3}{n}} \right)}} = \lim \frac{{n\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{n\left( {8 + \frac{3}{n}} \right)}}\)

\( = \lim \frac{{\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{8 + \frac{3}{n}}} = \frac{{\sqrt {\lim 4 + \lim \frac{1}{n} + \lim \frac{1}{{{n^2}}}} }}{{\lim 8 + \lim \frac{3}{n}}} = \frac{{\sqrt 4 }}{8} = \frac{2}{8} = \frac{1}{4}\)

f) Ta có:

\(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}} = \lim \frac{{\frac{{{4^n}}}{{{5^n}}} + 1}}{{3.\frac{{{4^n}}}{{{5^n}}} - 4}} = \frac{{\lim {{\left( {\frac{4}{5}} \right)}^n} + \lim 1}}{{\lim 3.\lim {{\left( {\frac{4}{5}} \right)}^n} - \lim 4}} = \frac{{0 + 1}}{{3.0 - 4}} =- \frac{1}{4}\)


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí