Giải bài 81 trang 99 SBT toán 10 - Cánh diều


Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABCA(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.

a) Lập phương trình các đường thẳng AB, BC, AC

b) Tìm toạ độ các điểm G, H, I

c) Tính diện tích tam giác ABC

Phương pháp giải - Xem chi tiết

a) Tìm các VTPT của các đường thẳng AB, BC, AC rồi viết PTTQ

b) Tham số hóa tọa độ các điểm G, H, I (nếu cần)

 Bước 1: Tìm tọa độ trọng tâm G theo công thức {xG=xA+xB+xC3yG=yA+yB+yC3{xG=xA+xB+xC3yG=yA+yB+yC3

Bước 2: Giải hệ PT: {AH.BC=0BH.AC=0AH.BC=0BH.AC=0 để tìm tọa độ trực tâm H

Bước 3: Giải hệ PT: {IA=IBIA=IC{IA=IBIA=IC để tìm tọa độ tâm I

Bước 4: Tính khoảng cách từ A đến BC là chiều cao của ∆ABC

Bước 5: Tính độ dài BC rồi tính diện tích ∆ABC

Lời giải chi tiết

a) Ta có: AB=(6;6),BC=(0;9),AC=(6;3)AB=(6;6),BC=(0;9),AC=(6;3)

+ Chọn n1=(1;1)n1=(1;1) thỏa mãn n1.AB=0n1.AB=0. Khi đó AB đi qua A(-3 ; -1) và nhận n1=(1;1)n1=(1;1) nên có PT:

x - y + 2 = 0

+ Chọn n2=(1;0)n2=(1;0) thỏa mãn n2.BC=0n2.BC=0. Khi đó BC đi qua B(3 ; 5) và nhận n2=(1;0)n2=(1;0) nên có PT: x – 3 = 0

+ Chọn n3=(1;2)n3=(1;2) thỏa mãn n3.AC=0n3.AC=0. Khi đó AC đi qua C(3 ; -4) và nhận n3=(1;2)n3=(1;2) nên có PT:

x + 2y + 5 = 0

b) Ta có:

+ G là trọng tâm ∆ABC nên G(1;0)G(1;0)

+ Gọi H(xH;yH)H(xH;yH) là trực tâm ∆ABC . Ta có: AH=(xH+3;yH+1),BH=(xH3;yH5)AH=(xH+3;yH+1),BH=(xH3;yH5)

Khi đó{AHBCBHAC{AH.BC=0BH.AC=0{AHBCBHACAH.BC=0BH.AC=0{9(yH+1)=06(xH3)3(yH5){yH+1=02xHyH1=0{9(yH+1)=06(xH3)3(yH5){yH+1=02xHyH1=0{xH=0yH=1{xH=0yH=1

H(0;1)H(0;1)

+ Gọi I(xI;yI)I(xI;yI) là tâm đường tròn ngoại tiếp tam giác ABC

Ta có: IA=(3xI;1yI)2IA=(xI+3)2+(yI+1)2IA2=(xI+3)2+(yI+1)2IA=(3xI;1yI)2IA=(xI+3)2+(yI+1)2IA2=(xI+3)2+(yI+1)2

          IB=(3xI;5yI)2IB=(xI3)2+(yI5)2IB2=(xI3)2+(yI5)2IB=(3xI;5yI)2IB=(xI3)2+(yI5)2IB2=(xI3)2+(yI5)2

          IC=(3xI;4yI)2IC=(xI3)2+(yI+4)2IC2=(xI3)2+(yI+4)2IC=(3xI;4yI)2IC=(xI3)2+(yI+4)2IC2=(xI3)2+(yI+4)2

Khi đó {IA=IBIA=IC{IA2=IB2IA2=IC2{(xI+3)2+(yI+1)2=(xI3)2+(yI5)2(xI+3)2+(yI+1)2=(xI3)2+(yI+4)2{IA=IBIA=IC{IA2=IB2IA2=IC2{(xI+3)2+(yI+1)2=(xI3)2+(yI5)2(xI+3)2+(yI+1)2=(xI3)2+(yI+4)2

                         {12xI+12yI=2412xI6yI=15{xI+yI=24xI2yI=5{xI=32yI=12I(32;12)

Vậy G(1;0),H(0;1),I(32;12)

c) Ta có: d(A,BC)=|33|1=6

BC=(0;9)BC=9

Diện tích tam giác ABC là: S=12AD.BC=12.6.9=27

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.