Giải bài 81 trang 99 SBT toán 10 - Cánh diều
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.
a) Lập phương trình các đường thẳng AB, BC, AC
b) Tìm toạ độ các điểm G, H, I
c) Tính diện tích tam giác ABC
Phương pháp giải - Xem chi tiết
a) Tìm các VTPT của các đường thẳng AB, BC, AC rồi viết PTTQ
b) Tham số hóa tọa độ các điểm G, H, I (nếu cần)
Bước 1: Tìm tọa độ trọng tâm G theo công thức {xG=xA+xB+xC3yG=yA+yB+yC3{xG=xA+xB+xC3yG=yA+yB+yC3
Bước 2: Giải hệ PT: {→AH.→BC=0→BH.→AC=0⎧⎨⎩−−→AH.−−→BC=0−−→BH.−−→AC=0 để tìm tọa độ trực tâm H
Bước 3: Giải hệ PT: {IA=IBIA=IC{IA=IBIA=IC để tìm tọa độ tâm I
Bước 4: Tính khoảng cách từ A đến BC là chiều cao của ∆ABC
Bước 5: Tính độ dài BC rồi tính diện tích ∆ABC
Lời giải chi tiết
a) Ta có: →AB=(6;6),→BC=(0;−9),→AC=(6;−3)−−→AB=(6;6),−−→BC=(0;−9),−−→AC=(6;−3)
+ Chọn →n1=(1;−1)→n1=(1;−1) thỏa mãn →n1.→AB=0→n1.−−→AB=0. Khi đó AB đi qua A(-3 ; -1) và nhận →n1=(1;−1)→n1=(1;−1) nên có PT:
x - y + 2 = 0
+ Chọn →n2=(1;0)→n2=(1;0) thỏa mãn →n2.→BC=0→n2.−−→BC=0. Khi đó BC đi qua B(3 ; 5) và nhận →n2=(1;0)→n2=(1;0) nên có PT: x – 3 = 0
+ Chọn →n3=(1;2)→n3=(1;2) thỏa mãn →n3.→AC=0→n3.−−→AC=0. Khi đó AC đi qua C(3 ; -4) và nhận →n3=(1;2)→n3=(1;2) nên có PT:
x + 2y + 5 = 0
b) Ta có:
+ G là trọng tâm ∆ABC nên ⇒G(1;0)⇒G(1;0)
+ Gọi H(xH;yH)H(xH;yH) là trực tâm ∆ABC . Ta có: →AH=(xH+3;yH+1),→BH=(xH−3;yH−5)−−→AH=(xH+3;yH+1),−−→BH=(xH−3;yH−5)
Khi đó{AH⊥BCBH⊥AC⇔{→AH.→BC=0→BH.→AC=0{AH⊥BCBH⊥AC⇔⎧⎨⎩−−→AH.−−→BC=0−−→BH.−−→AC=0⇔{−9(yH+1)=06(xH−3)−3(yH−5)⇔{yH+1=02xH−yH−1=0⇔{−9(yH+1)=06(xH−3)−3(yH−5)⇔{yH+1=02xH−yH−1=0⇔{xH=0yH=−1⇔{xH=0yH=−1
⇒H(0;−1)⇒H(0;−1)
+ Gọi I(xI;yI)I(xI;yI) là tâm đường tròn ngoại tiếp tam giác ABC
Ta có: →IA=(−3−xI;−1−yI)2⇒IA=√(xI+3)2+(yI+1)2⇒IA2=(xI+3)2+(yI+1)2−→IA=(−3−xI;−1−yI)2⇒IA=√(xI+3)2+(yI+1)2⇒IA2=(xI+3)2+(yI+1)2
→IB=(3−xI;5−yI)2⇒IB=√(xI−3)2+(yI−5)2⇒IB2=(xI−3)2+(yI−5)2−→IB=(3−xI;5−yI)2⇒IB=√(xI−3)2+(yI−5)2⇒IB2=(xI−3)2+(yI−5)2
→IC=(3−xI;−4−yI)2⇒IC=√(xI−3)2+(yI+4)2⇒IC2=(xI−3)2+(yI+4)2−→IC=(3−xI;−4−yI)2⇒IC=√(xI−3)2+(yI+4)2⇒IC2=(xI−3)2+(yI+4)2
Khi đó {IA=IBIA=IC⇔{IA2=IB2IA2=IC2⇔{(xI+3)2+(yI+1)2=(xI−3)2+(yI−5)2(xI+3)2+(yI+1)2=(xI−3)2+(yI+4)2{IA=IBIA=IC⇔{IA2=IB2IA2=IC2⇔{(xI+3)2+(yI+1)2=(xI−3)2+(yI−5)2(xI+3)2+(yI+1)2=(xI−3)2+(yI+4)2
⇔{12xI+12yI=2412xI−6yI=15⇔{xI+yI=24xI−2yI=5⇔{xI=32yI=12⇒I(32;12)
Vậy G(1;0),H(0;−1),I(32;12)
c) Ta có: d(A,BC)=|−3−3|1=6
→BC=(0;−9)⇒BC=9
Diện tích tam giác ABC là: S=12AD.BC=12.6.9=27


- Giải bài 82 trang 99 SBT toán 10 - Cánh diều
- Giải bài 83 trang 99 SBT toán 10 - Cánh diều
- Giải bài 84 trang 99 SBT toán 10 - Cánh diều
- Giải bài 80 trang 99 SBT toán 10 - Cánh diều
- Giải bài 79 trang 98 SBT toán 10 - Cánh diều
>> Xem thêm