Giải bài 46 trang 18 sách bài tập toán 10 - Cánh diều


Xác định hệ số của \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Xác định hệ số của \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức khai triển: \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\) với \(a = 2x,b = 3\)

Lời giải chi tiết

Ta có: \({(2x + 3)^5} = {(2x)^5} + 5.{(2x)^4}.3 + 10.{(2x)^3}{.3^2} + 10.{(2x)^2}{.3^3} + 5.2x{.3^4} + {3^5}\)

                      \( = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)

Số hạng chứa \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\) là \(240{x^4}\)

Vậy hệ số của \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\) là 240


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí