Giải bài 6.14 trang 10 sách bài tập toán 9 - Kết nối tri thức tập 2


Cho phương trình (ẩn x): ({x^2} + 4left( {m + 1} right)x + 4{m^2} - 3 = 0). a) Tính biệt thức (Delta '). b) Tìm điều kiện của m để phương trình: - Có hai nghiệm phân biệt; - Có nghiệm kép; - Vô nghiệm.

Đề bài

Cho phương trình (ẩn x): \({x^2} + 4\left( {m + 1} \right)x + 4{m^2} - 3 = 0\).

a) Tính biệt thức \(\Delta '\).

b) Tìm điều kiện của m để phương trình:

- Có hai nghiệm phân biệt;

- Có nghiệm kép;

- Vô nghiệm.

Phương pháp giải - Xem chi tiết

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt.

+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép.

+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết

\({x^2} + 4\left( {m + 1} \right)x + 4{m^2} - 3 = 0\) (1)

a) Ta có:

\(\Delta ' = {\left[ {2\left( {m + 1} \right)} \right]^2} - 1.\left( {4{m^2} - 3} \right) = 4{m^2} + 8m + 4 - 4{m^2} + 3 = 8m + 7\).

b) Phương trình (1) có hai nghiệm phân biệt khi \(\Delta ' > 0\), tức là \(8m + 7 > 0\), suy ra \(m > \frac{{ - 7}}{8}\).

Phương trình (1) có nghiệm kép khi \(\Delta ' = 0\), tức là \(8m + 7 = 0\), suy ra \(m = \frac{{ - 7}}{8}\).

Phương trình (1) vô nghiệm khi \(\Delta ' < 0\), tức là \(8m + 7 < 0\), suy ra \(m < \frac{{ - 7}}{8}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí