Giải bài 5.3 trang 24 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):x - 2y - 2z + 9 = 0\) và điểm \(A\left( {2; - 1;3} \right)\). a) Tính khoảng cách từ A đến mặt phẳng \(\left( \alpha \right)\). b) Viết phương trình mặt phẳng \(\left( \beta \right)\) đi qua A và song song với \(\left( \alpha \right)\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):x - 2y - 2z + 9 = 0\) và điểm \(A\left( {2; - 1;3} \right)\).

a) Tính khoảng cách từ A đến mặt phẳng \(\left( \alpha  \right)\).

b) Viết phương trình mặt phẳng \(\left( \beta  \right)\) đi qua A và song song với \(\left( \alpha  \right)\).

Phương pháp giải - Xem chi tiết

Ý a: Áp dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

Ý b: Mặt phẳng \(\left( \beta  \right)\) đi qua A và có cùng vectơ pháp tuyến với \(\left( \alpha  \right)\).

Lời giải chi tiết

a) Khoảng cách từ A đến mặt phẳng \(\left( \alpha  \right)\) là \(d\left( {A,\alpha } \right) = \frac{{\left| {2 - 2 \cdot \left( { - 1} \right) - 2 \cdot 3 + 9} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = \frac{7}{3}\).

b) Ta có \(\left( \beta  \right)\) song song với \(\left( \alpha  \right)\) nên \(\left( \beta  \right)\) có cùng vectơ pháp tuyến với \(\left( \alpha  \right)\).

Suy ra vectơ pháp tuyến của \(\left( \beta  \right)\) là \(\overrightarrow n  = \left( {1; - 2; - 2} \right)\).

Phương trình mặt phẳng của \(\left( \beta  \right)\) là \(1\left( {x - 2} \right) - 2\left( {y + 1} \right) - 2\left( {z - 3} \right) = 0 \Leftrightarrow x - 2y - 2z + 2 = 0\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí