Giải bài 5.24 trang 34 sách bài tập toán 12 - Kết nối tri thức>
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\). b) \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\). c) \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0\)
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\).
b) \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\).
c) \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0\)
Phương pháp giải - Xem chi tiết
Ý a: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Ý b: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Ý c: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết
a) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Xét phương trình \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\), ta có \(a = - 1,b = 0,c = 2,d = 2\).
Suy ra \({a^2} + {b^2} + {c^2} - d = 1 + 4 - 2 = 3 > 0\), do đó phương trình đã cho là phương trình mặt cầu.
Mặt cầu có tâm \(\left( { - 1;0;2} \right)\) và bán kính \(R = \sqrt 3 \).
b) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Xét phương trình \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\), ta có \(a = 1,b = - 1,c = - 1,d = 7\).
Suy ra \({a^2} + {b^2} + {c^2} - d = 1 + 1 + 1 - 7 = - 4 < 0\), do đó phương trình đã cho không là phương trình mặt
cầu.
c) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Xét phương trình \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} + 4x - 2y + 2z + \frac{2}{3} = 0\).
Ta có \(a = - 2,b = 1,c = - 1,d = \frac{2}{3}\).
Suy ra \({a^2} + {b^2} + {c^2} - d = 4 + 1 + 1 - \frac{2}{3} = \frac{{16}}{3} > 0\), do đó phương trình đã cho là phương trình mặt cầu.
Mặt cầu có tâm \(\left( { - 2;1; - 1} \right)\) và bán kính \(R = \frac{4}{{\sqrt 3 }}\).
- Giải bài 5.25 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 5.26 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 5.27 trang 35 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 5.23 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 5.22 trang 34 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức