Giải bài 43 trang 82 SBT toán 10 - Cánh diều


Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0. Chứng minh rằng khoảng cách giữa hai đường thẳng ∆1 và ∆2 bằng \(\frac{{\left| {d - c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0. Chứng minh rằng khoảng cách giữa hai đường thẳng ∆1 và ∆bằng \(\frac{{\left| {d - c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Phương pháp giải - Xem chi tiết

Bước 1: Tìm tọa độ điểm M thuộc ∆1

Bước 2: Tính khoảng cách d(M, ∆2) rồi biến đổi biểu thức để chứng minh

Lời giải chi tiết

Gọi \(M\left( {{x_M};\frac{{ - c - a{x_M}}}{b}} \right)\) thuộc đường thẳng ∆1

Do ∆1 // ∆nên \(d({\Delta _1},{\Delta _2}) = d(M,{\Delta _2})\)

Ta có: \(d(M,{\Delta _2}) = \frac{{\left| {a.{x_M} + b.\frac{{ - c - a{x_M}}}{b} + d} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)\( = \frac{{\left| {a{x_M} - c - a{x_M} + d} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {d - c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Vậy \(d({\Delta _1},{\Delta _2}) = \frac{{\left| {d - c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\) (ĐPCM)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí