Giải chuyên đề học tập Toán lớp 10 Kết nối tri thức
Bài 3. Phương pháp quy nạp toán học Chuyên đề học tập T..
Giải bài 2.6 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức>
Cho tổng ({S_n} = frac{1}{{1.2}} + frac{1}{{2.3}} + ... + frac{1}{{n(n + 1)}}).
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{n(n + 1)}}\).
a) Tính \({S_1},{S_2},{S_3}.\)
b) Dự đoán công thức tính tổng \({S_n}\) và chứng minh bằng quy nạp.
Lời giải chi tiết
a)
\(\begin{array}{l}{S_1} = \frac{1}{{1.2}} = \frac{1}{2}\\{S_2} = \frac{1}{{1.2}} + \frac{1}{{2.3}} = \frac{2}{3}\\{S_3} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} = \frac{3}{4}\end{array}\)
b) Dự đoán \({S_n} = \frac{n}{{n + 1}}\) với mọi số tự nhiên \(n \ge 1\) (6)
Ta chứng minh (6) bằng phương pháp quy nạp
Với \(n = 1\) ta có \({S_1} = \frac{1}{2}\)
Vậy (6) đúng với \(n = 1\)
Giải sử (5) đúng với \(n = k\) tức là ta có \({S_k} = \frac{k}{{k + 1}}\)
Ta chứng minh (3) đúng với \(n = k + 1\) tức là chứng minh \({S_{k + 1}} = \frac{{k + 1}}{{k + 2}}\)
Thật vậy, ta có
\(\begin{array}{l}{S_{k + 1}} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{k(k + 1)}} + \frac{1}{{(k + 1)(k + 2)}}\\ = \frac{k}{{k + 1}} + \frac{1}{{(k + 1)(k + 2)}} = \frac{{k(k + 2) + 1}}{{(k + 1)(k + 2)}} = \frac{{{k^2} + 2k + 1}}{{(k + 1)(k + 2)}}\\ = \frac{{{{(k + 1)}^2}}}{{(k + 1)(k + 2)}} = \frac{{k + 1}}{{k + 2}}\end{array}\)
Vậy (6) đúng với mọi số tự nhiên \(n \ge 1\).
- Giải bài 2.7 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức
- Giải bài 2.8 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức
- Giải bài 2.5 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức
- Giải bài 2.4 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức
- Giải bài 2.3 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 3.26 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.25 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.23 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.24 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.22 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.26 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.25 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.24 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.23 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 3.22 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống




