Giải bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2


Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\). Trên BC lấy điểm I sao cho tam giác SDI vuông tại S. Biết góc giữa hai mặt phẳng (SDI) và (ABCD) là \({60^0}\). Tính độ dài SI.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.  

Lời giải chi tiết

Kẻ \(AK \bot ID\) tại K. Vì \(SA \bot \left( {ABCD} \right),AK \subset \left( {ABCD} \right) \Rightarrow SA \bot ID\), mà \(AK \bot ID\) nên \(ID \bot \left( {SAK} \right) \Rightarrow ID \bot SK\)

Ta có: \(AK \bot ID,ID \bot SK,AK \subset \left( {ABCD} \right),SK \subset \left( {SID} \right)\), ID là giao tuyến của hai mặt phẳng SID và ABCD. Do đó, \(\left( {\left( {SID} \right),\left( {ABCD} \right)} \right) = \left( {SK,AK} \right) = \widehat {SKA} = {60^0}\)

Vì \(SA \bot \left( {ABCD} \right),AD,AK \subset \left( {ABCD} \right) \Rightarrow SA \bot AD,SA \bot AK\)

Áp dụng định lí Pythagore vào tam giác SAD vuông tại A có:

\(SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = a\sqrt 5 \)

Tam giác SAK vuông tại A nên: \(\sin \widehat {SKA} = \frac{{SA}}{{SK}} \Rightarrow SK = \frac{{SA}}{{\sin \widehat {SKA}}} = \frac{{2a\sqrt 3 }}{3}\)

Tam giác SID vuông tại S, đường cao SK có:

\(\frac{1}{{S{I^2}}} + \frac{1}{{S{D^2}}} = \frac{1}{{S{K^2}}} \) \( \Rightarrow \frac{1}{{S{I^2}}} = \frac{1}{{S{K^2}}} - \frac{1}{{S{D^2}}} = \left( {\frac{9}{{12{a^2}}}} \right) - \frac{1}{{{{\left( {a\sqrt 5 } \right)}^2}}} = \frac{{11}}{{20{a^2}}} \) \( \Rightarrow SI = \frac{{2a\sqrt {55} }}{{11}}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí