Giải bài 2 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo>
Chứng minh rằng với mọi (n in mathbb{N}*):
Đề bài
Chứng minh rằng với mọi \(n \in \mathbb{N}^*\):
a) \({3^n} - 1 - 2n\) chia hết cho 4.
b) \({7^n} - {4^n} - {3^n}\) chia hết cho 12.
Phương pháp giải - Xem chi tiết
Ta chứng minh bằng phương pháp quy nạp.
Lời giải chi tiết
a) Với \(n = 1\) ta có \({3^1} - 1 - 2 = 0 \vdots 4\).
Vậy khẳng định đúng với \(n = 1\).
Giải sử khẳng định đúng với \(n = k\) tức là ta có \({3^k} - 1 - 2k\) chia hết cho 4.
Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh \({3^{k + 1}} - 1 - 2(k + 1)\) chia hết cho 4.
Sử dụng giả thiết quy nạp, ta có:
\({3^{k + 1}} - 1 - 2(k + 1) = {3^{k + 1}} - 3 - 2k = 3.\underbrace {\left( {{3^k} - 1 - 2k} \right)}_{ \vdots 4} + 4k\) chia hết cho 4.
Vậy khẳng định đúng với mọi \(n \in {\mathbb{N}^*}\).
b) Với \(n = 1\) ta có \({7^1} - {4^1} - {3^1} = 0 \vdots 12\).
Vậy khẳng định đúng với \(n = 1\).
Giải sử khẳng định đúng với \(n = k\) tức là ta có \({7^k} - {4^k} - {3^k}\) chia hết cho 12.
Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh \({7^{k + 1}} - {4^{k + 1}} - {3^{k + 1}}\) chia hết cho 12.
Sử dụng giả thiết quy nạp, lưu ý \(k \ge 1\), ta có:
\({7^{k + 1}} - {4^{k + 1}} - {3^{k + 1}} = {7.7^k} - {4.4^k} - {3.3^k} = 7\underbrace {\left( {{7^k} - {4^k} - {3^k}} \right)}_{ \vdots 12} + \underbrace {{{3.4}^k}}_{ \vdots 12} + \underbrace {{{4.3}^k}}_{ \vdots 12}\) chia hết cho 12.
Vậy khẳng định đúng với mọi \(n \in {\mathbb{N}^*}\).
- Giải bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo