Giải bài 19 trang 58 sách bài tập toán 9 - Cánh diều tập 1>
Cho \(a = \sqrt {3 - 2\sqrt 2 } \) và \(b = \sqrt {3 + 2\sqrt 2 } \). Chứng minh: a) \(a - b\) là một số nguyên. b) \(ab\) là một số tự nhiên.
Đề bài
Cho \(a = \sqrt {3 - 2\sqrt 2 } \) và \(b = \sqrt {3 + 2\sqrt 2 } \). Chứng minh:
a) \(a - b\) là một số nguyên.
b) \(ab\) là một số tự nhiên.
Phương pháp giải - Xem chi tiết
Bước 1: Biến đổi \(3 - 2\sqrt 2 \) và \(3 + 2\sqrt 2 \) thành bình phương của một hiệu và một tổng.
Bước 2: Rút gọn các biểu thức \(a - b\) và \(ab\).
Lời giải chi tiết
a) \(a - b \) \(= \sqrt {3 - 2\sqrt 2 } - \sqrt {3 + 2\sqrt 2 } \) \(= \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} \) \(= \left| {\sqrt 2 - 1} \right| - \left| {\sqrt 2 + 1} \right| \) \(= \left( {\sqrt 2 - 1} \right) - \left( {\sqrt 2 + 1} \right) \) \(= - 2.\)
Vậy \(a - b\) là một số nguyên.
b) \(a.b \) \(= \sqrt {3 - 2\sqrt 2 } .\sqrt {3 + 2\sqrt 2 } \) \(= \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} .\sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} \) \(= \left| {\sqrt 2 - 1} \right|.\left| {\sqrt 2 + 1} \right|\\ \) \(= \left( {\sqrt 2 - 1} \right).\left( {\sqrt 2 + 1} \right) \) \(= {\left( {\sqrt 2 } \right)^2} - 1 \) \(= 2 - 1 \) \(= 1.\)
Vậy \(ab\) là một số tự nhiên.
- Giải bài 20 trang 58 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 21 trang 58 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 22 trang 58 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 23 trang 58 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 18 trang 58 sách bài tập toán 9 - Cánh diều tập 1
>> Xem thêm
Các bài khác cùng chuyên mục