Giải bài 16 trang 106 sách bài tập toán 9 - Cánh diều tập 1


Cho hình vuông ABCD. Trên đường chéo BD, lấy điểm H sao cho BH = AB. Qua điểm H kẻ đường thẳng vuông góc với BD cắt AD tại O. a) So sánh OA, OH, HD. b) Xác định vị trí tương đối của BD và đường tròn (O; OA).

Đề bài

Cho hình vuông ABCD. Trên đường chéo BD, lấy điểm H sao cho BH = AB. Qua điểm H kẻ đường thẳng vuông góc với BD cắt AD tại O.

a) So sánh OA, OH, HD.

b) Xác định vị trí tương đối của BD và đường tròn (O; OA).

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh \(\Delta OAB = \Delta OHB\) để suy ra \(OA = OH\)

Bước 2: Chứng minh tam giác ODH là tam giác vuông cân để suy ra \(OH = DH\).

b) Chỉ ra BD là tiếp tuyến của (O).

Lời giải chi tiết

a) Do ABCD là hình vuông nên \(\widehat {DAB} = \widehat {ADC} = 90^\circ \), và DB là tia phân giác của góc ADB nên \(\widehat {ADB} = 45^\circ \).

Xét tam giác OAB và tam giác OHB có:

\(\widehat {OAB} = \widehat {OHB} = 90^\circ \);

OB chung;

\(AB = BH\)

Suy ra \(\Delta OAB = \Delta OHB\) (cạnh huyền – cạnh góc vuông)

Do đó \(OA = OH\) (cặp cạnh tương ứng) (1)

Xét tam giác ODH vuông tại H có \(\widehat {ODH} = 45^\circ \) nên tam giác ODH là tam giác vuông cân tại H, do đó \(OH = DH\) (2)

Từ (1) và (2) ta có \(OA = OH = DH\).

b) Vì \(OA = OH\) và OH vuông góc với Bd tại H nên BD là tiếp tuyến của (O). Vậy BD tiếp xúc với (O;OA).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 17 trang 106 sách bài tập toán 9 - Cánh diều tập 1

    Từ điểm A ở ngoài đường tròn (O) vẽ tiếp tuyến AB của đường tròn với B là tiếp điểm. Lấy các điểm C, D thuộc đường tròn (O) sao cho C nằm giữa A và D, O không thuộc AD. Gọi I là trung điểm của đoạn thẳng CD, tia OI cắt AB tại E (Hình 16). Chứng minh: a) \(EB.EA = EI.EO\) b) \(A{B^2} = AC.AD\)

  • Giải bài 18 trang 107 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn (O; 4 cm) và đường thẳng d sao cho khoảng cách từ điểm O đến đường thẳng d là OH = 5 cm. Đường thẳng OH cắt đường tròn (O) tại A. Gọi B là trung điểm của đoạn thẳng OA. Trên đường thẳng d, lấy một điểm I (khác H), kẻ tiếp tuyến IC của đường tròn (O) với C là tiếp điểm (Hình 17). Chứng minh tam giác IBC cân tại I.

  • Giải bài 15 trang 106 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn tâm O đường kính AB = 2R, bán kính OC vuông góc với AB tại O. Lấy điểm F thuộc đoạn thẳng OB, tia CF cắt đường tròn (O) tại D. Tiếp tuyến tại D của đường tròn (O) cắt AB tại E (hình 15). Chứng minh EF = ED.

  • Giải bài 14 trang 106 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn (O;R) và điểm A sao cho OA = 2R. Kẻ tiếp tuyến AB của đường tròn (O; R) với B là tiếp điểm (hình 14). Tính độ dài đoạn thẳng AB theo R.

  • Giải bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1

    Cho hình thang vuông ABCD (\(\widehat A = \widehat D = 90^\circ \)) có AB = 4 cm, BC = 13 cm, CD = 9 cm. a) Tính độ dài đoạn thẳng AD. b) Đường thẳng AD có tiếp xúc với đường tròn đường kính BC hay không? Vì sao?

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí