Giải bài 1 trang 107 SGK Toán 8 tập 1 - Cánh diều


Cho tứ giác ABCD có

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tứ giác ABCD có \(\widehat {DAB} = \widehat {BC{\rm{D}}};\widehat {ABC} = \widehat {C{\rm{D}}A}\). Kẻ tia Ax là tia đối của tia AB. Chứng minh:

a) \(\widehat {ABC} + \widehat {DAB} = {180^o}\)

b) \(\widehat {xA{\rm{D}}} = \widehat {ABC};AC//BC\)

c) Tứ giác ABCD là hình bình hành.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng các góc của 1 tứ giác bằng \({360^0}.\)

Lời giải chi tiết

a, Tứ giác ABCD có:

\(\widehat {ABC} + \widehat {BCD} + \widehat {CDA} + \widehat {DAB} = {360^0}\)

\(\widehat {ABC} + \widehat {DAB} + \widehat {ABC} + \widehat {DAB} = {360^0}\)(do \(\widehat {DAB} = \widehat {BCD};\widehat {ABC} = \widehat {CDA}\))

\(\begin{array}{l}2\widehat {ABC} + 2\widehat {DAB} = {360^0}\\\widehat {ABC} + \widehat {DAB} = \dfrac{{{{360}^0}}}{2} = {180^0}\end{array}\)

b, Ta có: \(\widehat {xAD} + \widehat {DAB} = {180^0}\)(do tia Ax là tia đối của tia AB)

Nên \(\widehat {xAD} + \widehat {DAB} = \widehat {ABC} + \widehat {DAB}\)

Suy ra \( \widehat {xAD} = \widehat {ABC}\)

Suy ra AD//BC (hai góc đồng vị bằng nhau)

c, Vì AD//BC nên \(\widehat {ADB} = \widehat {DBC}\) (2 góc so le trong)

Xét \(\Delta ADB\) có \(\widehat {ABD} = {180^0} - \widehat {ADB} - \widehat {DAB} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 1 \right)\)

(vì \(\widehat {ADB} = \widehat {DBC};\widehat {DAB} = \widehat {BCD})\)

Xét \(\Delta CDB\) có: \(\widehat {BDC} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 2 \right)\)

Từ (1), (2) suy ra \(\widehat {ABD} =\widehat {BDC}\)

Xét \(\Delta ADB\) và \(\Delta BCD\) có:

\(\left. \begin{array}{l}DB \; chung\\\widehat {ABD} = \widehat {BDC}\\\widehat {BAD} = \widehat {DBC}\end{array} \right\}\)

Suy ra \(\Delta A{\rm{D}}B = \Delta C{\rm{D}}B\)

Do đó \(A{\rm{D}} = BC,AB = CB\)

Suy ra tứ giác ABCD có cặp cạnh đối bằng nhau nên ABCD là hình bình hành.


Bình chọn:
4.4 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí