Đề thi giữa kì 2 Toán 7 - Đề số 2 - Chân trời sáng tạo>
Tải vềI. TRẮC NGHIỆM ( 3 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
I. TRẮC NGHIỆM ( 3 điểm)
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1. Thay tỉ số 1,25 : 3,45 bằng tỉ số giữa các số nguyên ta được
A. 12,5 : 34,5;
B. 29 : 65;
C. 25 : 69;
D. 1 : 3.
Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là
A. x = −56, y = −32;
B. x = 32, y = 56;
C. x = 56, y = 32;
D. x = 56, y = −32.
Câu 3. Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?
A. –6;
B. 0;
C. –9;
D. –1.
Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:
A. –32;
B. 32;
C. –2;
D. 2.
Câu 5. Biểu thức đại số biểu thị “Lập phương của tổng của hai số x và y” là
A. x3 – y3;
B. x + y;
C. x3 + y3;
D. (x + y)3.
Câu 6. Một tam giác có ba góc có số đo tỉ lệ với 3,4,5. Số đo ba góc của tam giác lần lượt là:
A. 450; 600; 750;
B. 300; 600; 900;
C. 200; 600; 1000;
D. Một kết quả khác.
Câu 7. Cho tam giác \(MNP\) có \(MN = MP\). Gọi \(A\) là trung điểm của \(NP\). Nếu \(\angle NMP = {50^0}\) thì số đo của \(\angle MPN\) là:
A. \({100^0}\) B. \({130^0}\) C. \({50^0}\) D. \({65^0}\)
Câu 8. Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB > AC} \right)\). Tia phân giác của góc \(B\) cắt \(AC\) ở \(D\). Kẻ \(DH\) vuông góc với \(BC\).Chọn câu đúng.
A. \(BH = BD\) B. \(BH > BA\) C. \(BH < BA\) D. \(BH = BA\)
Câu 9. Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng ?
A. MP < MN;
B. MP = MN;
C. MP > MN;
D. Không đủ dữ kiện so sánh.
Câu 10. Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng?
A. DN = DP;
B. MD < MP;
C. MD > MN;
D. MN = MP.
Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?
A. 18cm; 28cm; 10cm;
B. 5cm; 4cm; 6cm;
C. 15cm; 18cm; 20cm;
D. 11cm; 9cm; 7cm.
Câu 12. Cho G là trọng tâm tam giác MNP có trung tuyến MK. Khẳng định nào sau đây là đúng?
A. \(\dfrac{{MG}}{{GK}} = \dfrac{1}{2}\);
B. \(\dfrac{{MG}}{{MK}} = \dfrac{1}{3}\) ;
C. \(\dfrac{{KG}}{{MK}} = \dfrac{1}{3}\);
D. \(\dfrac{{MG}}{{MK}} = \dfrac{2}{3}\).
II. PHẦN TỰ LUẬN (7,0 điểm)
Bài 1. (2 điểm) Tìm \(x\) biết:
a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\) b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\)
c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)
Bài 2. (2 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.
Bài 3. (2,5 điểm) Cho \(\Delta ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(DM = MA\).
a) Chứng minh \(\Delta AMB = \Delta DMC\).
b) Trên tia đối của tia \(CD\), lấy điểm \(I\) sao cho \(CI = CA\), qua điểm \(I\) vẽ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E\). Chứng minh \(\Delta ACE = \Delta ICE\), từ đó suy ra \(\Delta ACE\) là tam giác vuông cân.
Bài 4. (0,5 điểm) Cho x,y,z thỏa mãn:\(\dfrac{x}{2} = \dfrac{y}{5} = \dfrac{z}{7}\) với x,y,z khác 0. Tính:
\(P = \dfrac{{x - y + z}}{{x + 2y - z}}\).
Lời giải
I. Trắc nghiệm
1.C |
2.B |
3. A |
4.A |
5.A |
6. A |
7.D |
8.D |
9.B |
10.B |
11.A |
12.C |
Câu 1.
Phương pháp
Nhân cả tử và mẫu của phân số với 1 số khác 0, ta được phân số có giá trị không đổi.
Lời giải
1,25 : 3,45 = 125 : 345 = 25 : 69.
Chọn C.
Câu 2.
Phương pháp
Áp dụng tính chất dãy tỉ số bằng nhau
Lời giải
Vì 7x = 4y nên \(\dfrac{x}{4} = \dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)
Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.
Chọn B.
Câu 3.
Phương pháp
Đại lượng \(y\) tỉ lệ thuận với \(x\) theo hệ số tỉ lệ \(k\) thì \(y = kx\)
Lời giải
Khi x = - 3 thì \(y = kx = 2.( - 3) = - 6\)
Chọn A.
Câu 4.
Phương pháp
Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)
Cách giải:
Hệ số tỉ lệ là: -12 . 8 = -96.
Khi x = 3 thì y = -96 : 3 = -32.
Chọn A
Câu 5.
Phương pháp
Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)
Cách giải:
Hệ số tỉ lệ là: -21 . 12 = -252.
Khi x = 7 thì y = -252 : 7 = -36.
Chọn A
Câu 6.
Phương pháp
Áp dụng:
Định lí Tổng định lí 3 góc trong một tam giác bằng 180 độ.
Tính chất của dãy tỉ số bằng nhau
Cách giải:
Gọi số đo 3 góc của tam giác lần lượt là a,b,c.
Vì tổng 3 góc trong một tam giác là 180 độ nên \(a + b + c = 180^\circ \).
Do số đo ba góc tỉ lệ với 3;4;5 nên \(\dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5}\).
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\begin{array}{l}\dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{3 + 4 + 5}} = \dfrac{{180}}{{12}} = 15\\ \Rightarrow a = 15.3 = 45;\\b = 15.4 = 60;\\c = 15.5 = 75.\end{array}\)
Chọn A.
Câu 7.
Phương pháp:
Vận dụng định lí:
+ Nếu ba cạnh của tam giác bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
+ Tổng ba góc trong một tam giác bằng \({180^0}\).
Cách giải:
* Vì \(A\) là trung điểm của \(NP\) nên \(AN = AP\) (tính chất trung điểm của đoạn thẳng)
* Xét \(\Delta AMN\) và \(\Delta AMP\) có:
\(MN = MP\) (giả thiết)
\(AN = AP\) (chứng minh trên)
\(AM\) là cạnh chung
Suy ra \(\Delta AMN = \Delta AMP\,\left( {c.c.c} \right)\)
Do đó, \(\angle MNA = \angle MPA\) (hai góc tương ứng) hay \(\angle MNP = \angle MPN\)
Xét \(\Delta MNP\) có: \(\angle MNP + NPM + \angle NMP = {180^0}\) (tổng ba góc trong một tam giác)
\(\begin{array}{l} \Rightarrow \angle MPN + \angle MPN + {50^0} = {180^0}\\ \Rightarrow 2\angle MPN = {180^0} - {50^0}\\ \Rightarrow 2\angle MPN = {130^0}\\ \Rightarrow \angle MPN = {130^0}:2\\ \Rightarrow \angle MPN = {65^0}\end{array}\)
Vậy \(\angle MPN = {65^0}\)
Chọn D.
Câu 8.
Phương pháp:
Chứng minh hai tam giác vuông bằng nhau theo trường hợp cạnh huyền – góc nhọn, từ đó suy ra cặp cạnh tương ứng bằng nhau.
Cách giải:
Xét \(\Delta BAD\) và \(\Delta BHD\) có:
\(\angle BAD = \angle BHD = 90^\circ \)
\(BD\) chung
\(\angle ABD = \angle HBD\) (vì \(BD\) là tia phân giác \(\angle B\))
\( \Rightarrow \Delta ABD = \Delta HBD\) (cạnh huyền – góc nhọn)
\( \Rightarrow BA = BH\)(hai cạnh tương ứng).
Chọn D.
Câu 9.
Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.
Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.
Cách giải:
Xét tam giác MNP có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)
\( \Rightarrow \widehat M = 180^\circ - \widehat N - \widehat P = 180^\circ - 70^\circ - 55^\circ = 55^\circ \)
Ta được: \(\widehat M = \widehat P\)
Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.
Vậy NP = MN.
Chọn B.
Câu 10:
Phương pháp: Sử dụng mối quan hệ đường xiên và hình chiếu.
Sử dụng quan hệ đường vuông góc và đường xiên.
Cách giải:
Trong tam giác MNP có MN < MP, hình chiếu của MN và MP trên cạnh NP lần lượt là ND và PD.
Do đó, ND < PD.
Ta có: MD < MP (đường vuông góc nhỏ hơn đường xiên)
Chọn B
Câu 11.
Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.
Cách giải:
Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.
Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.
Chọn A.
Câu 12.
Phương pháp
Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\)
Lời giải
Vì G là trọng tâm tam giác MNP nên G là giao điểm của ba đường trung tuyến nên
\(MG = \dfrac{2}{3}MK;GK = \dfrac{1}{3}MK;MG = 2GK\)
Chọn C.
II. PHẦN TỰ LUẬN (7,0 điểm)
Bài 1. (1,5 điểm)
a) + b) Thực hiện các phép toán với số hữu tỉ.
c) Vận dụng định nghĩa hai phân thức bằng nhau.
Cách giải:
a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\) \(\begin{array}{l}x = \dfrac{{ - 9}}{{10}} + \dfrac{2}{5}\\x = \dfrac{{ - 9 + 2.2}}{{10}}\\x = \dfrac{{ - 5}}{{10}} = \dfrac{{ - 1}}{2}\end{array}\) Vậy \(x = - \dfrac{1}{2}\)
|
b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\) \(\begin{array}{l}\dfrac{1}{4}x = \dfrac{{ - 5}}{6} - \dfrac{3}{4}\\\dfrac{1}{4}x = \dfrac{{ - 5.2 - 3.3}}{{12}}\\\dfrac{1}{4}x = \dfrac{{ - 19}}{{12}}\\x = \dfrac{{ - 19}}{{12}}:\dfrac{1}{4}\\x = \dfrac{{ - 19}}{3}\end{array}\) Vậy \(x = \dfrac{{ - 19}}{3}\)
|
|
c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)
\(\begin{array}{l} - 2\left( {x - 1} \right) = 3\left( {2 - x} \right)\\ - 2x + 2 = 6 - 3x\\ - 2x + 3x = 6 - 2\\x = 4\end{array}\)
Vậy \(x = 4\)
Câu 2 (1 điểm)
Phương pháp:
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))
Áp dụng tính chất của dãy tỉ số bằng nhau.
Cách giải:
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))
Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) nên ta có: \(\dfrac{x}{5} = \dfrac{y}{3}\)
Hai lần chiều dài hơn ba lần chiều rộng là \(8\) cm nên \(2x - 3y = 8\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{2x}}{{10}} = \dfrac{{3y}}{9} = \dfrac{{2x - 3y}}{{10 - 9}} = \dfrac{8}{1} = 8\)
Khi đó, \(\dfrac{x}{5} = 8 \Rightarrow x = 40\) (tmđk)
\(\dfrac{y}{3} = 8 \Rightarrow y = 24\) (tmđk)
Chu vi của hình chữ nhật là: \(2\left( {x + y} \right) = 2\left( {40 + 24} \right) = 128\) (cm)
Bài 5. (2,0 điểm)
Phương pháp:
a) Ta sẽ chứng minh: \(\Delta AMB = \Delta DMC\left( {c.g.c} \right)\)
b) Ta sẽ chứng minh: \(\angle EIC = {90^0}\), từ đó chứng minh được \(\Delta ACE = \Delta ICE\)(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)
\( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)
Cách giải:
a) \(\Delta ABC\) vuông tại \(A,AM\) là đường trung tuyến\( \Rightarrow CM = BM\)
Ta có: \(\angle CMD = \angle AMB\) (hai góc đối đỉnh)
Xét \(\Delta AMB\) và \(\Delta DMC\) có:
\(\left. \begin{array}{l}CM = BM\left( {cmt} \right)\\\angle CMD = \angle AMB\left( {cmt} \right)\\AM = MD\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta AMB = \Delta DMC\left( {c.g.c} \right)\)
b) Ta có: \(\Delta AMB = \Delta DMC\left( {cmt} \right) \Rightarrow \angle ABM = \angle DCM\) (hai góc tương ứng)
Mà hai góc \(\angle ABM;\angle DCM\) ở vị trí so le trong
\( \Rightarrow AB//CD\)
Mà \(AB \bot AC(\Delta ABC\) vuông tại \(A)\)
\( \Rightarrow CD \bot AC\) tại \(C \Rightarrow EI \bot CD\) tại \(I\) (vì \(EI//AC\)) hay \(\angle EIC = {90^0}\)
Xét \(\Delta ACE\) và \(\Delta ICE\) có:
\(\left. \begin{array}{l}\angle EAC = \angle EIC = {90^0}\\CE\,\,chung\\AC = IC\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta ACE = \Delta ICE\) (cạnh huyền – cạnh góc vuông)
\( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)
Mà \(\angle ICE = \angle AEC\) (vì \(AB//CD\))
\( \Rightarrow \angle ACE = \angle AEC\)
\( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)
Bài 4. (0,5 điểm)
Phương pháp:
Đặt \(\dfrac{x}{2} = \dfrac{y}{5} = \dfrac{z}{7} = k\)
Cách giải:
Đặt \(\dfrac{x}{2} = \dfrac{y}{5} = \dfrac{z}{7} = k \Rightarrow x = 2k;y = 5k;z = 7k.\)
Ta có: \(P = \dfrac{{x - y + z}}{{x + 2y - z}} = \dfrac{{2k - 5k + 7k}}{{2k + 2.5k - 7k}} = \dfrac{{4k}}{{5k}} = \dfrac{4}{5}.\)
Vậy \(P = \dfrac{4}{5}.\)
- Đề thi giữa kì 2 Toán 7 - Đề số 3 - Chân trời sáng tạo
- Đề thi giữa kì 2 Toán 7 - Đề số 4 - Chân trời sáng tạo
- Đề thi giữa kì 2 Toán 7 - Đề số 5 - Chân trời sáng tạo
- Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 6
- Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 7
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay