Đề bài

Có bao nhiêu giá trị nguyên của tham số \(m\) để bất phương trình \(\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\) có 5 nghiệm nguyên?

  • A.
    \(65021\)
  • B.
    \(65024\)
  • C.
    \(65022\)
  • D.
    \(65023\)
Phương pháp giải

Xét hai trường hợp \(\left\{ \begin{array}{l}{3^{{x^2} - x}} - 9 \le 0\,\,\,\,\left( 1 \right)\\{2^{{x^2}}} - m \ge 0\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\left( I \right)\) và \(\left\{ \begin{array}{l}{3^{{x^2} - x}} - 9 \ge 0\,\,\,\,\left( {1'} \right)\\{2^{{x^2}}} - m \le 0\,\,\,\,\,\,\left( {2'} \right)\end{array} \right.\,\,\,\left( {II} \right)\).

Lời giải của GV Loigiaihay.com

\(\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\)

TH1: \(\left\{ \begin{array}{l}{3^{{x^2} - x}} - 9 \le 0\,\,\,\,\left( 1 \right)\\{2^{{x^2}}} - m \ge 0\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\left( I \right)\)

\(\left( 1 \right) \Leftrightarrow {3^{{x^2} - x}} \le {3^2} \Leftrightarrow {x^2} - x \le 2 \Leftrightarrow  - 1 \le x \le 2\).

\( \Rightarrow \) Số nghiệm nguyên của bất phương trình (1) là  4 nghiệm, gồm \(\left\{ { - 1;0;1;2} \right\}\).

Như vậy hệ có tối đa 4 nghiệm nguyên, hay bất phương trình ban đầu cũng chỉ có tối đa 4 nghiệm nguyên (Loại).

TH2: \(\left\{ \begin{array}{l}{3^{{x^2} - x}} - 9 \ge 0\,\,\,\,\left( {1'} \right)\\{2^{{x^2}}} - m \le 0\,\,\,\,\,\,\left( {2'} \right)\end{array} \right.\,\,\,\left( {II} \right)\)

\(\left( {1'} \right) \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 1\end{array} \right.\).

\(\left( {2'} \right) \Leftrightarrow {2^{{x^2}}} \le m \Leftrightarrow {x^2} \le {\log _2}m \Leftrightarrow  - \sqrt {{{\log }_2}m}  \le x \le \sqrt {{{\log }_2}m} \).

Để (II) có nghiệm thì \(\left\{ \begin{array}{l} - \sqrt {{{\log }_2}m}  \le  - 1\\\sqrt {{{\log }_2}m}  \ge 2\end{array} \right.\).

Mà bất phương trình ban đầu có 5 nghiệm nguyên nên các nghiệm đó bắt buộc phải là -3, -2, -1, 2, 3.

Do đó

\(\begin{array}{l}  3 \le \sqrt {{{\log }_2}m}  < 4\\ \Leftrightarrow 9 \le {\log _2}m < 16\\ \Leftrightarrow 512 \le m < 65536\end{array}\)

Vậy có \(65535 - 512 + 1 = 65024\) giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán. 

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho hàm số $f\left( x \right) = \dfrac{{{3^x}}}{{{7^{{x^2} - 4}}}}$. Hỏi khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 2 :

Tìm tập nghiệm S của bất phương trình \({5^{x + 1}} - \dfrac{1}{5} > 0\)

Xem lời giải >>
Bài 3 :

Tìm tập nghiệm của bất phương trình \({5^x} < 7 - 2x\)  

Xem lời giải >>
Bài 4 :

Tập hợp nghiệm của bất phương trình: ${3^{3x - 2}} + \dfrac{1}{{{{27}^x}}} \le \dfrac{2}{3}$ là:

Xem lời giải >>
Bài 5 :

Nghiệm của bất phương trình \({e^x} + {e^{ - x}} < \dfrac{5}{2}\) là

Xem lời giải >>
Bài 6 :

Tìm tập nghiệm của bất phương trình ${7^x} \ge 10-3x$

Xem lời giải >>
Bài 7 :

Tìm tập nghiệm của bất phương trình \({\left( {\dfrac{1}{2}} \right)^x} \ge 2\).

Xem lời giải >>
Bài 8 :

Tìm tập nghiệm $S$ của bất phương trình ${2^{x - 1}} > {\left( {\dfrac{1}{{16}}} \right)^{\frac{1}{x}}}$ .

Xem lời giải >>
Bài 9 :

Bất phương trình \({\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\)  có tập nghiệm là:

Xem lời giải >>
Bài 10 :

Bất phương trình \({\left( {2 - \sqrt 3 } \right)^x} > {\left( {2 + \sqrt 3 } \right)^{x + 2}}\)  có tập nghiệm là:

Xem lời giải >>
Bài 11 :

Tìm số nghiệm nguyên của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\dfrac{1}{3}} \right)^{x - 2}}\)

Xem lời giải >>
Bài 12 :

Tìm tập nghiệm của bất phương trình \(0,{3^{{x^2} + x}} > 0,09\)

Xem lời giải >>
Bài 13 :

Tìm số nghiệm nguyên của bất phương trình \({\left( {\dfrac{1}{5}} \right)^{{x^2} - 2x}} \ge \dfrac{1}{{125}}\)

Xem lời giải >>
Bài 14 :

Cho hàm số $f\left( x \right) = {5^x}{.9^{{x^3}}}$, chọn phép biến đổi sai khi giải bất phương trình:

Xem lời giải >>
Bài 15 :

Tập nghiệm của bất phương trình \({\left( {{x^2} + x + 1} \right)^x} < 1\) là:

Xem lời giải >>
Bài 16 :

Tập nghiệm của bất phương trình \({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:

Xem lời giải >>
Bài 17 :

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) có bảng biến thiên như sau:

Bất phương trình \(f\left( x \right) < {e^x} + m\) đúng với mọi \(x \in \left( { - 1;1} \right)\) khi và chỉ khi:

Xem lời giải >>
Bài 18 :

Số nghiệm nguyên của bất phương trình \({4^x} - {5.2^x} + 4 < 0\) là:

Xem lời giải >>
Bài 19 :

Gọi \(S\) là tập hợp các số tự nhiên \(n\) có 4 chữ số thỏa mãn \({\left( {{2^n} + {3^n}} \right)^{2020}} < {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\). Số phần tử của \(S\) là:

Xem lời giải >>
Bài 20 :

Cho \(x;y\) là hai số thực dương thỏa  mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).

Xem lời giải >>