Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
-
A.
\(10\)
-
B.
\( - 10\)
-
C.
\( - 11\)
-
D.
\(12\)
Phân tích mẫu thức thành nhân tử rồi sử dụng phương pháp tách hạng tử để giải
\(\dfrac{1}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{1}{{b - a}}\left( {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} \right),a \ne b\) . Sau đó, làm theo các bước giải phương trình chứa ẩn ở mẫu.
Phân tích các mẫu thành nhân tử sau đó nhân cả 2 vế của phương trình với 2 ta được:
\(\dfrac{1}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{1}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{1}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{1}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{1}{5}\\\dfrac{2}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{2}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{2}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{2}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{2}{5}\)
ĐKXĐ: $x \ne \left\{ { - 1; - 3; - 5; - 7; - 9} \right\}$ .
Khi đó:
\(\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}} + \dfrac{1}{{x + 3}} - \dfrac{1}{{x + 5}} + \dfrac{1}{{x + 5}} - \dfrac{1}{{x + 7}} + \dfrac{1}{{x + 7}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\\dfrac{{1\left( {x + 9} \right) - 1\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 9} \right)}} = \dfrac{{2\left( {x + 1} \right)\left( {x + 9} \right)}}{{5\left( {x + 1} \right)\left( {x + 9} \right)}}\\5\left[ {x + 9 - \left( {x + 1} \right)} \right] = 2\left( {x + 1} \right)\left( {x + 9} \right)\\5\left( {x + 9 - x - 1} \right) = 2{x^2} + 20x + 18\\2{x^2} + 20x - 22 = 0 \\{x^2} + 10x - 11 = 0\\{x^2} - x + 11x - 11 = 0 \\\left( {x - 1} \right)\left( {x + 11} \right) = 0\)
Suy ra \(x - 1 = 0\) hoặc \(x + 11 = 0\),
tức là \(x = 1(tm)\) hoặc \(x = - 11(tm)\)
Vậy tổng các nghiệm của phương trình là \(1 + \left( { - 11} \right) = - 10.\)
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai:
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
Giải các phương trình
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)
a) Viết biểu thức biểu thị diện tích đất còn lại sau khi đã xây bồn hoa.
b) Hãy tính bán kính của bồn hoa hình tròn biết diện tích đất còn lại sau khi xây bồn hoa là \(54,71{m^2}\).