Chọn câu sai:
-
A.
Phương trình bậc nhất một ẩn có dạng $ax + b = 0,a \ne 0$
-
B.
Phương trình có một nghiệm duy nhất được gọi là phương trình bậc nhất một ẩn
-
C.
Trong một phương trình ta có thể nhân cả hai vế với cùng một số khác 0
-
D.
Phương trình \(3x + 2 = x + 8\) và \(6x + 4 = 2x + 16\) là hai phương trình tương đương.
Dựa vào định nghĩa phương trình bậc nhất 1 ẩn, phương trình tương đương
+ Phương trình dạng \(ax + b = 0,\) với $a$ và $b$ là hai số đã cho và \(a \ne 0,\) được gọi là phương trình bậc nhất một ẩn.
+ Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác $0.$
+ Hai phương trình có cùng một tập nghiệm là hai phương trình tương đương.
Các câu A, C, D đúng
Câu B sai vì phương trình có 1nghiệm duy nhất còn có thể là phương trình chứa ẩn ở mẫu, phương trình tích
Đáp án : B
Các bài tập cùng chuyên đề
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
Giải các phương trình
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)