Giải các phương trình
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)
a) Áp dụng các bước giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = {0^{}}(a \ne 0,c \ne 0):\)
Bước 1: Giải 2 phương trình \(ax + b = 0,cx + d = 0\)
Bước 2: Lấy tất cả các nghiệm của 2 phương trình vừa giải được
b) Đưa phương trình đã cho về dạng phương trình tích, sau đó làm giải phương trình tích vừa tìm được theo các bước ở ý a.
c), d) Quy đồng, khử mẫu của phương trình.
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
Để giải phương trình trên, ta giải 2 phương trình sau:
\(\begin{array}{l} + )\,3x + 5 = 0\\3x = - 5\\x = \frac{-5}{3}\end{array}\)
\(\begin{array}{l} + )\,\frac{{12}}{5} - 2x = 0\\2x = \frac{{12}}{5}\\x = \frac{6}{5}\end{array}\)
Vậy phương trình có 2 nghiệm \(x = \frac{-5}{3}\) và \(x = \frac{6}{5}.\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
Ta có:
\(\begin{array}{l}{\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\\{\left( {7x - 1} \right)^2} - 4{\left( {1 - 2x} \right)^2} = 0\\\left[ {7x - 1 - 2\left( {1 - 2x} \right)} \right]\left[ {7x - 1 + 2\left( {1 - 2x} \right)} \right] = 0\\\left( {11x - 3} \right)\left( {3x + 1} \right) = 0\end{array}\)
Để giải phương trình trên, ta giải 2 phương trình sau:
\(\begin{array}{l} + )\,11x - 3 = 0\\11x = 3\\x = \frac{3}{{11}}\\ + )\,3x + 1 = 0\\3x = - 1\\x = \frac{{ - 1}}{3}\end{array}\)
Vậy phương trình có 2 nghiệm \(x = \frac{3}{{11}}\) và \(x = \frac{{ - 1}}{3}.\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
Điều kiện xác định: \(x \ne \frac{{ - 3}}{4}.\)
\(\begin{array}{l}\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\\\frac{{16{x^2}}}{{8\left( {4x + 3} \right)}} - \frac{{\left( {4x - 3} \right)\left( {4x + 3} \right)}}{{8\left( {4x + 3} \right)}} = \frac{{8\left( {4x + 3} \right)}}{{8\left( {4x + 3} \right)}}\\16{x^2} - \left( {4x - 3} \right)\left( {4x + 3} \right) = 8\left( {4x + 3} \right)\\16{x^2} - 16{x^2} + 9 - 32x - 24 = 0\\ - 32x = 15\\x = \frac{{ - 15}}{{32}}\end{array}\)
Vậy phương trình có 2 nghiệm \(x = \frac{{ - 15}}{{32}}.\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)
Điều kiện xác định: \(x \ne 1,x \ne - 5\)
\(\begin{array}{l}\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\\\frac{x}{{\left( {x - 1} \right)\left( {x + 5} \right)}} - \frac{{2\left( {x + 5} \right)}}{{\left( {x - 1} \right)\left( {x + 5} \right)}} = 0\\x - 2x - 10 = 0\\ - x = 10\\x = - 10(tm)\end{array}\)
Vậy phương trình có 2 nghiệm \(x = - 10.\)
Các bài tập cùng chuyên đề
Chọn câu sai:
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
a) Viết biểu thức biểu thị diện tích đất còn lại sau khi đã xây bồn hoa.
b) Hãy tính bán kính của bồn hoa hình tròn biết diện tích đất còn lại sau khi xây bồn hoa là \(54,71{m^2}\).