Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
-
A.
Không tồn tại số phức
-
B.
\(\left| {{z_0}} \right| = 2\)
-
C.
\(\left| {{z_0}} \right| = 7\)
-
D.
\(\left| {{z_0}} \right| = 3.\)
- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)
- Bước 2: Thay \(z\) và biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).
- Bước 3: Sử dụng mối quan hệ hình học để tìm mô đun số phức cần tìm.
Giả sử $z = a + bi\left( {a,b \in R} \right)$ ta có:
$\left| {z + 3 + 4i} \right| = 2 \Leftrightarrow \left| {(a + 3) + (b + 4)i} \right| = 2 \Leftrightarrow {(a + 3)^2} + {(b + 4)^2} = 4$
Do đó tập hợp điểm biểu diễn số phức $z$ thuộc đường tròn tâm $I\left( { - 3; - 4} \right)$ và bán kính $r = 2$

Từ hình vẽ ta thấy số phức \({z_0}\) có mô đun nhỏ nhất nếu \({z_0}\) có điểm biểu diễn là \(M\).
Ta có: $\overrightarrow {OI} = ( - 3; - 4)$ nên đường thẳng đi qua \(O\) và \(I\) là $OI:\left\{ \begin{array}{l}x = 3t\\y = 4t\end{array} \right. \Rightarrow M\left( {3t;4t} \right)$
Mặt khác $M \in \left( C \right)$ nên: ${\left( {3t + 3} \right)^2} + {\left( {4t + 4} \right)^2} = 4 \Leftrightarrow 25{t^2} + 50t + 21 = 0 \Leftrightarrow \left\{ \begin{array}{l}t = \dfrac{{ - 3}}{5}\\t = \dfrac{{ - 7}}{5}\end{array} \right.$
$M\left( {\dfrac{{ - 9}}{5};\dfrac{{ - 12}}{5}} \right)$ hoặc $M\left( {\dfrac{{ - 21}}{5};\dfrac{{ - 28}}{5}} \right)$
$M\left( {\dfrac{{ - 9}}{5};\dfrac{{ - 12}}{5}} \right)$ thuộc $\left( C \right)$ và gần $O$ nhất.
$ \Rightarrow z = \dfrac{{ - 9}}{5} - \dfrac{{12}}{5}i \Rightarrow \left| z \right| = 3$
Đáp án : D
Các bài tập cùng chuyên đề
Với hai số phức bất kì ${z_1},{z_2}$ , khẳng định nào sau đây đúng:
Cho số phức $z$ thỏa mãn điều kiện \(\left| {z - 2 + 2i} \right| = 1\). Tìm giá trị lớn nhất của\(\left| z \right|\)
Cho số phức $z$ thỏa mãn \(|z - 2 - 2i| = 1\). Số phức \(z - i\) có mô đun nhỏ nhất là:
Xác định số phức \(z\) thỏa mãn \(|z - 2 - 2i| = \sqrt 2 \) mà \(|z|\) đạt giá trị lớn nhất.
Cho số phức \(z\) có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là
Cho số phức \(z\) thoả \(|z - 3 + 4i| = 2\) và \(w = 2z + 1 - i\). Khi đó \(|w|\) có giá trị lớn nhất là:
Cho số phức \(z\) thỏa mãn \(|{z^2} - i| = 1\). Tìm giá trị lớn nhất của \(|\bar z|\).
Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).
Cho số phức \(z\) có điểm biểu diễn nằm trên đường thẳng \(3x - 4y - 3 = 0\), $\left| z \right|$ nhỏ nhất bằng.
Cho số phức \(z\) thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:
Cho \({z_1},{z_2}\) thỏa mãn \(|{z_1} - {z_2}| = 1\) và \(|{z_1} + {z_2}| = 3\). Tính \(\max T = |{z_1}| + |{z_2}|\)
Tìm giá trị nhỏ nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{4 + 2i}}{{1 - i}}z - 1| = 1\).
Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).
Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là
Xét các số phức \(z,\,\,w\) thỏa mãn \(\left| z \right| = 2,\,\,\left| {iw - 2 + 5i} \right| = 1\). Giá trị nhỏ nhất của \(\left| {{z^2} - wz - 4} \right|\) bằng:
Đề thi THPT QG - 2021 - mã 101
Xét các số phức \(z,\,{\rm{w}}\) thỏa mãn \(\left| z \right| = 1\) và \(\left| {\rm{w}} \right| = 2.\) Khi \(\left| {z + i\,\overline {\rm{w}} - 6 - 8i} \right|\) đạt giá trị nhỏ nhất, \(\left| {z - {\rm{w}}} \right|\) bằng?