Đề bài

Với hai số phức bất kì ${z_1},{z_2}$ , khẳng định nào sau đây đúng:

  • A.

    $\left| {{z_1} + {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|$

  • B.

    $\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$

  • C.

    $\left| {{z_1} + {z_2}} \right| \ge \left| {{z_1}} \right| + \left| {{z_2}} \right|$

  • D.

    $\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|$

Phương pháp giải

Dựa vào tính chất của bất đẳng thức chứa dấu giá trị tuyệt đối:

$\left| {\left| x \right| - \left| y \right|} \right| \le \left| {x + y} \right| \le \left| x \right| + \left| y \right|$

Lời giải của GV Loigiaihay.com

Ta có: \(\left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right| \le \left| {{z_1} \pm {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\) nên A đúng.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho số phức $z$ thỏa mãn điều kiện \(\left| {z - 2 + 2i} \right| = 1\). Tìm giá trị lớn nhất của\(\left| z \right|\)

Xem lời giải >>
Bài 2 :

Cho số phức $z$ thỏa mãn \(|z - 2 - 2i| = 1\). Số phức \(z - i\) có mô đun nhỏ nhất là:

Xem lời giải >>
Bài 3 :

Xác định số phức \(z\) thỏa mãn \(|z - 2 - 2i| = \sqrt 2 \) mà \(|z|\) đạt giá trị lớn nhất.

Xem lời giải >>
Bài 4 :

Cho số phức \(z\) có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là

Xem lời giải >>
Bài 5 :

Cho số phức \(z\) thoả \(|z - 3 + 4i| = 2\) và \(w = 2z + 1 - i\). Khi đó \(|w|\) có giá trị lớn nhất là:

Xem lời giải >>
Bài 6 :

Cho số phức \(z\) thỏa mãn \(|{z^2} - i| = 1\). Tìm giá trị lớn nhất của \(|\bar z|\).

Xem lời giải >>
Bài 7 :

Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).

Xem lời giải >>
Bài 8 :

Cho số phức \(z\) có điểm biểu diễn nằm trên đường thẳng \(3x - 4y - 3 = 0\), $\left| z \right|$ nhỏ nhất bằng.

Xem lời giải >>
Bài 9 :

Cho số phức \(z\) thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:

Xem lời giải >>
Bài 10 :

Cho \({z_1},{z_2}\) thỏa mãn \(|{z_1} - {z_2}| = 1\) và \(|{z_1} + {z_2}| = 3\). Tính \(\max T = |{z_1}| + |{z_2}|\) 

Xem lời giải >>
Bài 11 :

Tìm giá trị nhỏ nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{4 + 2i}}{{1 - i}}z - 1| = 1\).

Xem lời giải >>
Bài 12 :

Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).

Xem lời giải >>
Bài 13 :

Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là

Xem lời giải >>
Bài 14 :

Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:

Xem lời giải >>
Bài 15 :

Xét các số phức \(z,\,\,w\) thỏa mãn \(\left| z \right| = 2,\,\,\left| {iw - 2 + 5i} \right| = 1\). Giá trị nhỏ nhất của \(\left| {{z^2} - wz - 4} \right|\) bằng:

Xem lời giải >>
Bài 16 :

Đề thi THPT QG - 2021 - mã 101

Xét các số phức \(z,\,{\rm{w}}\) thỏa mãn \(\left| z \right| = 1\)\(\left| {\rm{w}} \right| = 2.\) Khi \(\left| {z + i\,\overline {\rm{w}}  - 6 - 8i} \right|\) đạt giá trị nhỏ nhất, \(\left| {z - {\rm{w}}} \right|\) bằng? 

Xem lời giải >>