Cho \({z_1},{z_2}\) thỏa mãn \(|{z_1} - {z_2}| = 1\) và \(|{z_1} + {z_2}| = 3\). Tính \(\max T = |{z_1}| + |{z_2}|\)
-
A.
$8$
-
B.
$10$
-
C.
$4$
-
D.
\(\sqrt {10} \)
Gọi \({z_1} = {x_1} + {y_1}i\),\({z_2} = {x_2} + {y_2}i\), thay vào biểu thức đề bài tìm mối liên hệ \({x_1},{x_2},{y_1},{y_2}\).
Áp dụng bất đẳng thức Bunhiacopxki ${\left( {ax + by} \right)^2} \le \left( {{a^2} + {b^2}} \right)\left( {{x^2} + {y^2}} \right)$ để đánh giá \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).
Giả sử \({z_1} = {x_1} + {y_1}i\),\({z_2} = {x_2} + {y_2}i\).
Theo giả thiết \(|{z_1} - {z_2}| = 1\) có
\({({x_1} - {x_2})^2} + {({y_1} - {y_2})^2} = 1 \Leftrightarrow x_1^2 + x_2^2 - 2{x_1}{x_2} + y_1^2 + y_2^2 - 2{y_1}{y_2} = 1\) (1)
Theo giả thiết \(|{z_1} + {z_2}| = 3\) có
\({({x_1} + {x_2})^2} + {({y_1} + {y_2})^2} = 9 \Leftrightarrow x_1^2 + x_2^2 + 2{x_1}{x_2} + y_1^2 + y_2^2 + 2{y_1}{y_2} = 9\) (2)
Cộng vế với vế của (1) và (2) ta có
\(x_1^2 + x_2^2 + y_1^2 + y_2^2 = 5\)
Ta có
\(T = \sqrt {x_1^2 + y_1^2} + \sqrt {x_2^2 + y_2^2} \)
Theo bất đẳng thức Bunhiacopxki ta có
\(T \le \sqrt {2.(x_1^2 + x_2^2 + y_1^2 + y_2^2)} = \sqrt {10} \)
Đáp án : D
Các bài tập cùng chuyên đề
Với hai số phức bất kì ${z_1},{z_2}$ , khẳng định nào sau đây đúng:
Cho số phức $z$ thỏa mãn điều kiện \(\left| {z - 2 + 2i} \right| = 1\). Tìm giá trị lớn nhất của\(\left| z \right|\)
Cho số phức $z$ thỏa mãn \(|z - 2 - 2i| = 1\). Số phức \(z - i\) có mô đun nhỏ nhất là:
Xác định số phức \(z\) thỏa mãn \(|z - 2 - 2i| = \sqrt 2 \) mà \(|z|\) đạt giá trị lớn nhất.
Cho số phức \(z\) có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là
Cho số phức \(z\) thoả \(|z - 3 + 4i| = 2\) và \(w = 2z + 1 - i\). Khi đó \(|w|\) có giá trị lớn nhất là:
Cho số phức \(z\) thỏa mãn \(|{z^2} - i| = 1\). Tìm giá trị lớn nhất của \(|\bar z|\).
Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).
Cho số phức \(z\) có điểm biểu diễn nằm trên đường thẳng \(3x - 4y - 3 = 0\), $\left| z \right|$ nhỏ nhất bằng.
Cho số phức \(z\) thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:
Tìm giá trị nhỏ nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{4 + 2i}}{{1 - i}}z - 1| = 1\).
Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).
Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
Xét các số phức \(z,\,\,w\) thỏa mãn \(\left| z \right| = 2,\,\,\left| {iw - 2 + 5i} \right| = 1\). Giá trị nhỏ nhất của \(\left| {{z^2} - wz - 4} \right|\) bằng:
Đề thi THPT QG - 2021 - mã 101
Xét các số phức \(z,\,{\rm{w}}\) thỏa mãn \(\left| z \right| = 1\) và \(\left| {\rm{w}} \right| = 2.\) Khi \(\left| {z + i\,\overline {\rm{w}} - 6 - 8i} \right|\) đạt giá trị nhỏ nhất, \(\left| {z - {\rm{w}}} \right|\) bằng?