Đề bài

Cho đường tròn \((C):{x^2} + {y^2} - 2x + 4y - 4 = 0\). Đường thẳng nào sau đây là tiếp tuyến của đường tròn:

  • A.

    \(x = 1\)

  • B.

    $x + y - 2 = 0$

  • C.

    \(2x + y - 1 = 0\)         

  • D.

    \(y = 1\)

Phương pháp giải

\(d\) là tiếp tuyến của đường tròn \((C)\) có tâm \(I\) bán kính \(R\)  khi ta có khoảng cách từ \(I\) đến đường thẳng \(d\) bằng \(R\).

Lời giải của GV Loigiaihay.com

\((C):{x^2} + {y^2} - 2x + 4y - 4 = 0\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + 4}  = 3\)

Nếu d có phương trình \(x = 1\) ta có \(d\left( {I;d} \right) = \left| {1 - 1} \right| = 0 \ne R\). Loại A

Nếu d có phương trình $x + y - 2 = 0$ thì ta có \(d\left( {I;d} \right) = \dfrac{{\left| {1 - 2 - 2} \right|}}{{\sqrt 2 }} = \dfrac{3}{{\sqrt 2 }} \ne R\). Loại B

Nếu d có phương trình $2x + y - 1 = 0$ thì ta có $d\left( {I;d} \right) = \dfrac{{\left| {2.1 - 2 - 1} \right|}}{{\sqrt 5 }} = \dfrac{1}{{\sqrt 5 }} \ne R$. Loại C

Nếu d có phương trình \(y = 1\) ta có \(d\left( {I;R} \right) = \left| {1 - \left( { - 2} \right)} \right| = 3 = R\).

Vậy $d$ là tiếp tuyến của $(C )$

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường tròn \((C):{x^2} + {y^2} - 4x - 2y = 0\)  và đường thẳng \(d:x - y + 1 = 0\). Tìm mệnh đề đúng trong các mệnh đề sau:

Xem lời giải >>
Bài 2 :

Đường thẳng \(d:4x + 3y + m = 0\)  tiếp xúc với đường tròn \((C):{x^2} + {y^2} = 1\)  khi:

Xem lời giải >>
Bài 3 :

Tiếp tuyến với đường tròn \((C):{x^2} + {y^2} = 2\)   tại điểm \(M(1;1)\) có phương trình là:

Xem lời giải >>
Bài 4 :

Cho \((C):{x^2} + {y^2} + 4x - 2y - 20 = 0,\) một phương trình tiếp tuyến của (C) vuông góc với đường thẳng \((d):3x + 4y - 37 = 0\) là:

Xem lời giải >>
Bài 5 :

Xác định vị trí tương đối giữa 2 đường tròn\(\left( {{C_1}} \right)\): \({x^2} + {y^2} - 4x = 0\) và \(\left( {{C_2}} \right)\):\({x^2} + {y^2} + 8y = 0\).

Xem lời giải >>
Bài 6 :

Cho đường tròn ${x^2} + {y^2} - 2x - 6y + 6 = 0$ và điểm $M\left( {4;1} \right).$  Viết phương trình tiếp tuyến của đường tròn và đi qua $M.$

Xem lời giải >>
Bài 7 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn $\left( C \right):{x^2} + {y^2} + 2x = 0$. Số  phương trình tiếp tuyến của \(\left( C \right)\), biết góc giữa tiếp tuyến này và trục hoành bằng \({60^o}\).

Xem lời giải >>
Bài 8 :

Trong mặt phẳng với hệ tọa độ $Oxy,$  cho đường tròn $\left( C \right)$  có phương trình: ${x^2} + {y^2}-6x + 5 = 0.$ Tìm điểm $M$  thuộc trục tung sao cho qua $M$  kẻ được hai tiếp tuyến với $\left( C \right)$  mà góc giữa hai tiếp tuyến đó bằng ${60^0}.$

Xem lời giải >>
Bài 9 :

Trong mặt phẳng $\left( {Oxy} \right),$  cho đường tròn \(\left( C \right):2{x^2} + 2{y^2} - 7x - 2 = 0\) và  hai điểm  $A\left( { - 2;0} \right),B\left( {4;3} \right).$  Viết phương trình các tiếp tuyến của $\left( C \right)$ tại các giao điểm của $\left( C \right)$ với đường thẳng $AB.$

Xem lời giải >>
Bài 10 :

Trong mặt phẳng với hệ tọa độ $Oxy,$  cho điểm $A\left( {-1;1} \right)$   và $B\left( {3;3} \right),$ đường thẳng $\Delta :3x-4y + 8 = 0.$ Có mấy phương trình đường tròn qua $A,B$  và tiếp xúc với đường thẳng \(\Delta \)?

Xem lời giải >>
Bài 11 :

Trong mặt phẳng với hệ tọa độ $Oxy$  cho hai đường thẳng $\Delta :x + 3y + 8 = 0$, $\Delta ':\,3x - 4y + 10 = 0$ và điểm $A\left( { - 2;1} \right).$ Viết phương trình đường tròn có tâm thuộc đường thẳng \(\Delta \), đi qua điểm $A$ và tiếp xúc với đường thẳng \(\Delta '\)

Xem lời giải >>
Bài 12 :

Trong mặt phẳng $Oxy$ cho ${\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9$ và đường thẳng $d:3x - 4y + m = 0$. Tìm $m$ để trên $d$ có duy nhất điểm $P$ sao cho từ $P$ vẽ $2$ tiếp tuyến $PA, PB$ của đường tròn và tam giác $PAB $ là tam giác đều.

Xem lời giải >>
Bài 13 :

Trong mặt phẳng tọa độ $Oxy $ cho đường tròn $(C):$ ${\left( {x - 1} \right)^2} + {y^2} = 1$. Gọi $I$ là tâm của $(C ).$ Xác định điểm $M$ thuộc $(C )$ sao cho $\widehat {IMO} = {30^0}.$

Xem lời giải >>
Bài 14 :

Trong mặt phẳng $Oxy$ cho đường tròn $(C ):$ ${x^2} + {y^2} + 2x - 4y = 0$ và đường thẳng $d: $ $x - y + 1 = 0$. Viết phương trình đường thẳng $\Delta $ sao cho $\Delta $ song song với $d$ và cắt $(C )$ tại $2$ điểm $M, N$ sao cho độ dài $MN=2.$

Xem lời giải >>
Bài 15 :

Cho đường tròn ${\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 4$ và điểm $M(5;2).$ Viết phương trình đường thẳng $d$ qua $M$ và cắt $(C )$ tại $2$ điểm $A$ và $B$ sao cho $M $ là trung điểm của $AB.$

Xem lời giải >>
Bài 16 : Đường thẳng \(d:x + 2y - 4 = 0\) cắt đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\) theo dây cung có độ dài bằng
Xem lời giải >>
Bài 17 : Bán kính của đường tròn tâm \(I\left( {3;2} \right)\) tiếp xúc với đường thẳng \(d:x + 5y + 1 = 0\) là:
Xem lời giải >>
Bài 18 : Cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x + 4y - 31 = 0\) có tâm \(I.\)  Đường thẳng \(d\) thay đổi cắt đường tròn \(\left( C \right)\) tại hai điểm phân biệt \(A,\,\,B\)  với \(AB\)  không là đường kính của đường tròn \(\left( C \right)\). Diện tích tam giác \(IAB\)  có giá trị lớn nhất bằng
Xem lời giải >>
Bài 19 : Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \((C):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Khẳng định nào đúng ?
Xem lời giải >>