Bài 34 trang 71 SGK Toán 7 tập 2

Bình chọn:
4.3 trên 306 phiếu

Giải bài 34 trang 71 SGK Toán 7 tập 2. Cho góc xOy khác góc bẹt

Đề bài

Cho góc \(xOy\) khác góc bẹt. Trên tia \(Ox\) lấy hai điểm \(A\) và \(B\), trên tia \(Oy\) lấy hai điểm \(C\) và \(D\) sao cho \(OA = OC, OB = OD.\) Gọi \(I\) là giao điểm của hai đoạn thẳng \(AD\) và \(BC.\) Chứng minh rằng:

a) \(BC = AD\)

b) \(IA = IC, IB = ID\)

c) Tia \(OI\) là tia phân giác của góc \(xOy\).

Phương pháp giải - Xem chi tiết

Chứng minh dựa vào các tam giác bằng nhau.

Lời giải chi tiết

a) Xét \( ∆AOD\) và  \(∆COB\) có:

+) \(OA = OC\) (giả thiết)

+) \(OD = OB\) (giả thiết)

+) \(\widehat{xOy}\) là góc chung

Vậy \(∆AOD =  ∆COB\) (c.g.c)

Suy ra \(AD = BC\) (hai cạnh tương ứng) (điều phải chứng minh).

b) Vì \(∆AOD =  ∆COB\) nên \(\widehat{D} = \widehat{B}\) và \(\widehat{C_1} = \widehat{A_1}\)

Ta có: \(OA + AB = OB\) \(\Rightarrow\) \(AB = OB - OA = OD - OC = CD.\)

Ta có:  \(\widehat{A_1} + \widehat{A_2} = 180^o\) (\(2\) góc kề bù)

\(\Rightarrow\) \(\widehat{A_2} = 180^o - \widehat{A_1} = 180^o - \widehat{C_1} =  \widehat{C_2}\) 

Xét \(∆AIB\) và  \(∆CID\) ta có:

+) \(AB = CD\) (chứng minh trên)

+) \(\widehat{B} = \widehat{D}\) (chứng minh trên)

+) \(\widehat{A_2} = \widehat{C_2}\) (chứng minh trên)

Vậy \(∆AIB = ∆CID\) (g.c.g)

\(\Rightarrow IC = IA\) và \(ID = IB\) (hai cạnh tương ứng)

c) Xét \(∆OAI\) và \( ∆OCI\) ta có:

+) \(OA = OC\) (giả thiết)

+) \(\widehat{A_1} = \widehat{C_1}\) (chứng minh trên)

+) \(IA = IC\) (chứng minh trên)

Vậy \( ∆OAI =  ∆OCI\) (c.g.c)

\(\Rightarrow\widehat{AOI} = \widehat{COI}\)

\(\Rightarrow\) \(OI\) là phân giác của \(\widehat{xOy}\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

Các bài liên quan: - Bài 5. Tính chất tia phân giác của một góc

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.