Bài 32 trang 70 SGK Toán 7 tập 2


Đề bài

Cho tam giác \(ABC.\) Chứng minh rằng giao điểm của hai tia phân giác của hai góc ngoài  \({B_1}\) và \({C_1}\) (h. 32) nằm trên tia phân giác của góc \(A.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Định lí 1 (thuận)

Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Định lý  2 (đảo)

Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên phân giác của góc đó.

Lời giải chi tiết

Gọi \(M\) là giao điểm của hai tia phân giác của hai góc ngoài \(B_1\) và \(C_1\) của \(∆ABC.\)

Kẻ \(MI  ⊥ AB; MH  ⊥ BC; MK  ⊥ AC\)  (\( H ∈ BC, I ∈ AB, K ∈ AC\)) 

Vì \(M\) nằm trên tia phân giác của góc ngoài tại đỉnh \(B\) nên \(MH = MI\) (Theo định lí 1)

Vì \(M\) nằm trên tia phân giác của góc ngoài tại đỉnh \(C\) nên \(MH = MK\) (Theo định lí 1)

\( \Rightarrow  MI = MK\) (vì cùng bằng \(MH\)).

\( \Rightarrow\) \(M\) thuộc phân giác của góc \(\widehat{BAC}\) (Theo định lí 2) 

Loigiaihay.com


Bình chọn:
4.4 trên 386 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.