Bài 32 trang 70 SGK Toán 7 tập 2>
Cho tam giác ABC
Đề bài
Cho tam giác \(ABC.\) Chứng minh rằng giao điểm của hai tia phân giác của hai góc ngoài \({B_1}\) và \({C_1}\) (h. 32) nằm trên tia phân giác của góc \(A.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Định lí 1 (thuận)
Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
Định lý 2 (đảo)
Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên phân giác của góc đó.
Lời giải chi tiết
Gọi \(M\) là giao điểm của hai tia phân giác của hai góc ngoài \(B_1\) và \(C_1\) của \(∆ABC.\)
Kẻ \(MI ⊥ AB; MH ⊥ BC; MK ⊥ AC\) (\( H ∈ BC, I ∈ AB, K ∈ AC\))
Vì \(M\) nằm trên tia phân giác của góc ngoài tại đỉnh \(B\) nên \(MH = MI\) (Theo định lí 1)
Vì \(M\) nằm trên tia phân giác của góc ngoài tại đỉnh \(C\) nên \(MH = MK\) (Theo định lí 1)
\( \Rightarrow MI = MK\) (vì cùng bằng \(MH\)).
\( \Rightarrow\) \(M\) thuộc phân giác của \(\widehat{BAC}\) (Theo định lí 2)
- Bài 33 trang 70 SGK Toán 7 tập 2
- Bài 34 trang 71 SGK Toán 7 tập 2
- Bài 35 trang 71 SGK Toán 7 tập 2
- Đề kiểm tra 15 phút - Đề số 1 - Bài 5, 6 - Chương 3 – Hình học 7
- Đề kiểm tra 15 phút - Đề số 2 - Bài 5, 6 - Chương 3 – Hình học 7
>> Xem thêm